Feedback controls for uncertain systems

  • Jean-Pierre Aubin
  • Hélène Frankowska
Part of the Progress in Systems and Control Theory book series (PSCT, volume 10)

Abstract

We derive partial differential inclusions of hyperbolic type the solutions of which are feedbacks governing the viable (controlled invariant) solutions of a control system. We also show that the tracking property leads to such partial differential inclusions. We prove a variational principle and an existence theorem of a (single-valued contingent) solution to such an inclusion.

Keywords

Manifold Hull Posit Lution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    AUBIN J.-P. (1981) Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions, Advances in Mathematics, Supplementary studies, Ed. Nachbin L., 160–232Google Scholar
  2. [2]
    AUBIN J.-P. (1987) Smooth and Heavy Solutions to Control Problems, in NONLINEAR AND CONVEX ANALYSIS, Eds. B-L. Lin & Simons S., Proceedings in honor of Ky Fan, Lecture Notes in pure and applied mathematics, June 24–26, 1985,Google Scholar
  3. [3]
    AUBIN J.-P. (1989) Smallest Lyapunov Functions of Differential Inclusions, J. Differential and Integral Equations, 2,Google Scholar
  4. [4]
    AUBIN J.-P. (1990) A Survey of Viability Theory, SIAM J. on Control and Optimization,Google Scholar
  5. [5]
    AUBIN J.-P. (to appear) VIABILITY THEORYGoogle Scholar
  6. [6]
    AUBIN J.-P. , BYRNES C. & ISIDORI A. (1990) Viability Kernels, Controlled Invariance and Zero Dynamics for Nonlinear Systems, Proceedings of the 9th International Conference on Analysis and Optimization of Systems, Nice, June 1990, Lecture Notes in Control and Information Sciences, Springer-VerlagGoogle Scholar
  7. [7]
    AUBIN J.-P. & CELLINA A. (1984) DIFFERENTIAL INCLUSIONS,Springer-Verlag, Grundlehren der math. Wiss.CrossRefGoogle Scholar
  8. [8]
    AUBIN J.-P. & DA PRATO G. (1990) Solutions contingentes de l’équation de la variété centrale, Comptes Rendus de l’Académie des Sciences, PARIS, Série 1, 311, 295–300Google Scholar
  9. [9]
    AUBIN J.-P. & DA PRATO G. (to appear) Contingent Solutions to the Center Manifold Equation, Annales de l’lnstitut Henri Poincaré, Analyse Non LinéaireGoogle Scholar
  10. [10]
    AUBIN J.-P. & EKELAND I. (1984) APPLIED NONLINEAR ANALYSIS, Wiley-InterscienceGoogle Scholar
  11. [11]
    AUBIN J.-P. & FRANKOWSKA H. (1990) SET-VALUED ANALYSIS, Birkhäuser, Boston, Basel, BerlinGoogle Scholar
  12. [12]
    AUBIN J.-P. & FRANKOWSKA H. (to appear) Viability Kernels of Control Systems, in NONLINEAR SYNTHESIS, Eds. Byrnes & Kurzhanski, BirkhäuserGoogle Scholar
  13. [13]
    BRENIER Y. (1984) Averaged Multivalued solutions for scalar conservation laws, SIAM J. Num. Anal., 21, 1013–1037CrossRefGoogle Scholar
  14. [14]
    BYRNES C.I. & ISIDORI A. (1984) A Frequency Domain Philosophy for Nonlinear Systems, with applications to stabilization and adaptive control, 23rd IEEE Conf. Dec. Control, 1569–1573CrossRefGoogle Scholar
  15. [15]
    BYRNES C.I. & ISIDORI A. (1989) Feedback Design From the Zero Dynamics Point of View, in COMPUTATION AND CONTROL,Bowers K. & Lund J. Eds., Birkhauser, 23–52CrossRefGoogle Scholar
  16. [16]
    BYRNES C.I. & ISIDORI A. (1990) Output Regulation of Nonlinear Systems, IEEE Trans. Autom. Control, 35, 131–140CrossRefGoogle Scholar
  17. [17]
    CARR J. (1981) APPLICATIONS OF CENTRE MANIFOLD THEORY,Springer VerlagCrossRefGoogle Scholar
  18. [18]
    CRANDALL M.G. & LIONS P.-L. (1983) Viscosity solutions of Hamilton-Jacobi equations, Transactions of A.M.S., 277, 1–42CrossRefGoogle Scholar
  19. [19]
    GUSEINOV H.G., SUBBOTIN A.I. & USHAKOV V.N. (1985) Derivatives for multivalued mappings with applications to game-theor etical problems of control, Problems of Control and Information Theory, 14, 155–168Google Scholar
  20. [20]
    FRANKOWSKA H. (1987) L’équation d’Hamilton-Jacobi con- tingente, Comptes Rendus de l’Académie des Sciences, PARIS, Série 1, 304, 295–298Google Scholar
  21. [21]
    FRANKOWSKA H. (1989) Optimal trajectories associated to a solution of contingent Hamilton-Jacobi Equations, Applied Mathematics and Optimization, 19, 291–311CrossRefGoogle Scholar
  22. [22]
    FRANKOWSKA H. (1989) Nonsmooth solutions of Hamilton-Jacobi-Bellman Equations, Proceedings of the International Conference Bellman Continuum, Antibes, France, June 13–14,1988, Lecture Notes in Control and Information Sciences, Springer VerlagGoogle Scholar
  23. [23]
    FRANKOWSKA H. (to appear) SET-VALUED ANALYSIS AND CONTROL THEORY, Birkhäuser, Boston, Basel, BerlinGoogle Scholar
  24. [24]
    SMOLLER J. (1983) SHOCKS WAVES AND REACTION-DIFFUSION EQUATIONS, Springer -VerlagCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Jean-Pierre Aubin
    • 1
  • Hélène Frankowska
    • 1
  1. 1.CEREMADE, Université Paris-DauphineParisFrance

Personalised recommendations