Exemples d’ensembles de Points en Position Uniforme

  • André Galligo
Part of the Progress in Mathematics book series (PM, volume 94)

Résumé

Un ensemble E de n points d’un espace affine, dont les équations forment un idéal de polynômes de colongueur n, est en position uniforme si pour tout sous-ensemble de n′ points E′ de E la fonction de Hilbert de E′ ne dépend que de n′.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Bourbaki, “Algèbre,” ch 5, Hermann, 1981.Google Scholar
  2. [2]
    J. Briançon, A. Galligo, Déformations distinguées de points, Astérisque n. 7 et 8 (1973), 129–138.Google Scholar
  3. [3]
    J. Brun, A. Hirschowitz, Le problème de Brill-Noether pour les idéaux de P2, Ann. Sc. E.N.S. 20 (1987), 171–200.MathSciNetMATHGoogle Scholar
  4. [4]
    B. Buchberger, Groebner bases: An algorithmic method in Polynomial Ideal Theory, in “Multidimensional System Theory,” D.Reidel Publishing Co., 1985, pp. 184–232.Google Scholar
  5. [5]
    M.A. Coppo, “Familles maximales de points surabondants dans la plan projectif,” Thèse, 1989. Université de NiceGoogle Scholar
  6. [6]
    E. Davis, Complete intersectionsrevisited, Rend. Sem. Mat. Torino 43, 2 (1985), 333–353.Google Scholar
  7. [7]
    Dubreil, Sur quelques propriétés des systèmes de points dans le plan et des courbes gauches algébriques, Bull. Soc. Math. France 61 (1933), 258–283.MathSciNetGoogle Scholar
  8. [8]
    J. C. Faugère, P. Gianni, D. Lazard, T. Mora, Efficient Computation of Zero-dimensional Gröbner Bases by Change of Ordering, (submitted), J. Symb. Comp. (1989). Technical Report LITP 89-52Google Scholar
  9. [9]
    O. Forster, “Lectures on Riemann Surfaces,” Graduate Texts in Math. 81, Spinger, 1981.Google Scholar
  10. [10]
    A. Galligo, “Algorithmes de calcul de bases standard,” Pre-print Université de Nice, 1983.Google Scholar
  11. [11]
    A. Galligo, A propos du théorème de préparation de Weierstrass, in “Séminaire Norguet,” Springer Lect. Notes in Math. vol 409, 1974, pp. 543–579.MathSciNetGoogle Scholar
  12. [12]
    A. Galligo, J. Grimm, L. Pottier, The design of SISYPHE, in “DISCO 1990,” Springer Lect.N. in C.S. 429, 1990, pp. 30–39.Google Scholar
  13. [13]
    A. Galligo, L. Pottier, C. Traverso, GECD and standard basis completion algorithm, in “ISSAC88,” Springer Lect.N. in C.S. vol 358, 1989, pp. 162–176.MathSciNetGoogle Scholar
  14. [14]
    A. V. Geramita, J. C. Migliore, “Hyperplane sections of smooth curves,” Queen’s Papers in Pure and Applied Math. vol 80, 1988.Google Scholar
  15. [15]
    L. Gruson, Ch. Peskine, “Genres de courbes de l’espace projectif,” Springer Lect. Notes in Math. 687, 1978.Google Scholar
  16. [16]
    J. Harris, The genus of space curves, Math. Ann. 249 (1980), 191–204.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    J. Heintz, On polynomials with symmetric Galois group which are easy to compute, T. C. S. 47 (1986), 99–105.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    D. Lazard, Ideal basis and Primary decomposition: case of two variables, J. S. C 1 (1985), 261–270.MathSciNetMATHGoogle Scholar
  19. [19]
    R. Maggioni, A. Ragusa, The hilbert function of generic plane sections of curves in P 3, Invent. Math. 91 (1988), 253–255.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    Matzat, “Konstruktive Galoistheorie,” Springer Lect.N. in Math, 1987.Google Scholar
  21. [21]
    M. Moeller, T. Mora, The computation of the Hilbert function, in “Proc. Eurocal’ 83,” Springer Lect Notes in C.S., 1983, pp. 157-167.Google Scholar
  22. [22]
    L. Robbiano (ed.), “Computational aspect of commutative Algebra,” Academic Press, 1989.Google Scholar
  23. [23]
    T. Sauer, The number of equations defining points in general position, Pacific J. of Math. 120 (1985), 199–213.MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    C Traverso, Groebner trace algorithms, in “Proceedings ISSAC 88,” Springer Lect. Notes in CS. vol 358, 1989, pp. 125–138.MathSciNetGoogle Scholar
  25. [25]
    B.L. van der Wærden, “Algebra,” volume 1, F. Ungar, 1970.Google Scholar
  26. [26]
    B.L. van der Waerden, Zur Algebraischen Geometrie, V, Math. Ann. 109 (1934), 128–133.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • André Galligo
    • 1
  1. 1.Département de MathématiquesUniversité de NiceNICE cedexFrance

Personalised recommendations