Skip to main content

A simple constructive proof of Canonical Resolution of Singularities

  • Chapter
Effective Methods in Algebraic Geometry

Part of the book series: Progress in Mathematics ((PM,volume 94))

Abstract

In these notes, we describe some of the main features of an explicit proof of canonical desingularization (of algebraic varieties or analytic spaces X) in characteristic zero. Full details will appear in [7]. The proof is a variation on our proof of local desingularization (“uniformization”) [4], [5], and justifies the philosophy that “a sufficiently good local choice [of centre of blowing-up] should globalize automatically” [5, p. 901]. The final version is surprisingly elementary; these notes, for example, include an essentially self-contained presentation of the hypersurface case. The general case involves a “reduction to the hypersurface case” result from [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.S. Abhyankar, “Weighted expansions for canonical desingularization,” Lecture Notes in Math. No. 910, Springer, Berlin-Heidelberg-New York, 1982.

    MATH  Google Scholar 

  2. S.S. Abhyankar, Good points of a hypersurface, Adv. in Math. 68 (1988), 87–256.

    Article  MathSciNet  MATH  Google Scholar 

  3. J.M. Aroca, H. Hironaka and J.L. Vicente, Desingularization theorems, Mem. Math. Inst. Jorge Juan No. 30, Consejo Superior de Investigaciones Científicas, Madrid, 1977.

    MATH  Google Scholar 

  4. E. Bierstone and P.D. Milman, Semianalytic and subanalytic sets, Publ. Math. I.H.E.S. 67 (1988), 5–42.

    MathSciNet  MATH  Google Scholar 

  5. E. Bierstone and P.D. Milman, Uniformization of analytic spaces, J. Amer. Math. Soc. 2 (1989), 801–836.

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Bierstone and P.D. Milman, Arc-analytic functions, Invent. Math. 101(1990), 411–424.

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Bierstone and P.D. Milman, Canonical desingularization in characteristic zero: a simple constructive proof, (to appear).

    Google Scholar 

  8. H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero: I, II, Ann. of Math. (2) 79 (1964), 109–326.

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Hironaka, Idealistic exponents of singularity, in “Algebraic Geometry,” J.J. Sylvester Sympos., John Hopkins Univ., Baltimore, Md.,1976, John Hopkins Univ. Press, Baltimore, Md., 1977, pp. 52–125.

    Google Scholar 

  10. T.T. Moh, Canonical resolution of hypersurface singularities of characteristic zero, preprint, Purdue University, 1990.

    Google Scholar 

  11. M. Spivakovsky, A solution to Hironaka’s polyhedra game, “Arithmetic and geometry, Vol. II,” Prog. Math. No. 36, Birkhäuser, Boston, Mass., 1983, pp. 419–432.

    Google Scholar 

  12. O. Villamayor, Constructiveness of Hironaka’s resolution, Ann. Scient. Ecole Norm. Sup. (4e série) 22 (1989), 1–32.

    MathSciNet  MATH  Google Scholar 

  13. B. Youssin, Newton polyhedra without coordinates, Mem. Amer. Math. Soc. 433 (1990), 1–74.

    MathSciNet  MATH  Google Scholar 

  14. B. Youssin, Newton polyhedra of ideals, Mem. Amer. Math. Soc. 433 (1990), 75–99.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bierstone, E., Milman, P.D. (1991). A simple constructive proof of Canonical Resolution of Singularities. In: Mora, T., Traverso, C. (eds) Effective Methods in Algebraic Geometry. Progress in Mathematics, vol 94. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0441-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0441-1_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6761-4

  • Online ISBN: 978-1-4612-0441-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics