Skip to main content

Algorithms for a Multiple Algebraic Extension

  • Chapter
Effective Methods in Algebraic Geometry

Part of the book series: Progress in Mathematics ((PM,volume 94))

Abstract

We give fast algorithms for computing product and inverse in a multiple algebraic extension of the rational numbers. The algorithms are almost linear in terms of the output length, i.e. they work in time O(d 1+δ), for all δ > 0, where d is an a priori bound on the length of the output. Since we require time Ω(d) just to write down the output the algorithms are close to optimal. The algorithm for inverse uses a technique referred to as dynamic evaluation for computing in algebraic extensions defined by reducible polynomials.

Supported by ESPRIT BRA 3012 CompuLog and Fakultetsnämnden KTH. Formerly with: The Royal Institute of Technology, 100 44 Stockholm, Sweden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. A. Abbott, Factorization of Polynomials Over Algebraic Nubmer Fields, PhD thesis, University of Bath, Bath, 1989.

    Google Scholar 

  2. J. A. Abbott, Recovery of algebraic numbers from their p-adic approximations, in “Proc. ISSAC’ 89,” ACM, 1989, pp. 112-120.

    Google Scholar 

  3. J. A. Abbott, R. J. Bradford, and J. H. Davenport, The Bath algebraic number package, in “Proc. SYMSAC’ 86,” ACM, 1986, pp. 250-253.

    Google Scholar 

  4. J. A. Abbott and J. H. Davenport, Polynomial factorization: an exploration of Lenstra’s algorithm, in “Proc. EUROCAL’ 87,” J. H. Davenport, editor; Lecture Notes in Computer Science 378, Springer-Verlag, Berlin-Heidelberg-New York, 1989, pp. 391-402.

    Google Scholar 

  5. A. Aho, J. E. Hopcroft, and J. D. Ullman, “The Design and Analysis of Computer Algorithms,” Addison-Wesley, Reading, Mass., 1974.

    Google Scholar 

  6. D. S. Arnon, G. E. Collins, and S. McCallum, Cylindrical algebraic decomposition, SIAM Journal on Computing 13 (1984), 865–877, 878-889.

    Article  MathSciNet  Google Scholar 

  7. E. R. Berlekamp, Factoring polynomials over large finite fields, Math. Comp. 24 (1970), 713–735.

    Article  MathSciNet  Google Scholar 

  8. B. Buchberger, Basic features and development of the critical pair completion procedure, in “Rewriting Techniques and Applications,” J. P. Jouannaud, editor; Lecture Notes in Computer Science 202, Springer-Verlag, Berlin-Heidelberg-New York, 1986, pp. 1–45.

    Google Scholar 

  9. D. G. Cantor and E. Kaltofen, Fast multiplication over arbitrary rings, Manuscript, 1986.

    Google Scholar 

  10. G. E. Collins, The calculation of multivariate polynomial resultants, Journal of the ACM 18 (1971), 515–532.

    Article  MATH  Google Scholar 

  11. G. E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decomposition, in “Second GI Conf. Automata Theory and Formal Languages,” Lecture Notes in Computer Science 33, Springer-Verlag, 1975, pp. 134–183.

    Google Scholar 

  12. D. Duval, Diverse Questions relatives au Calcul Formel avec des Nombres Algébriques, PhD thesis, L’université scientifique, technologique, et médicale de Grenoble, Grenoble, 1987.

    Google Scholar 

  13. S. Landau, Factoring polynomials over algebraic number fields, SIAM Journal on Computing 14 (1985), 184–195.

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Langemyr, Algorithms for a Multiple Algebraic Extension, Technical Report, Wilhelm-Schickard-Institut für Informatik, D-7400 Tübingen, 1990.

    Google Scholar 

  15. L. Langemyr, Computing the GCD of two Polynomials Over an Algebraic Number Field, PhD thesis, Royal Institute of Technology, Stockholm, 1988.

    Google Scholar 

  16. L. Langemyr and S. McCallum, The computation of polynomial greatest common divisors over an algebraic number field, J. Symbolic Comp. 8 (1989), 429–448.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. G. K. Loos, Generalized polynomial remainder sequences., in “Computer Algebra, Symbolic and Algebraic Computation,” B. Buchberger, G. E. Collins, and R. G. K. Loos, editors, Springer-Verlag, Wien-New York, 1982, pp.115–137.

    Google Scholar 

  18. J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94.

    MathSciNet  MATH  Google Scholar 

  19. P. J. Weinberger and L. P. Rothschild, Factoring polynomials over algebraic number fields, ACM Transactions on Mathematical Software 2 (1976), 335–350.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Langemyr, L. (1991). Algorithms for a Multiple Algebraic Extension. In: Mora, T., Traverso, C. (eds) Effective Methods in Algebraic Geometry. Progress in Mathematics, vol 94. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0441-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0441-1_16

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6761-4

  • Online ISBN: 978-1-4612-0441-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics