Skip to main content

A Fully Galerkin Method for the Recovery of Stiffness and Damping Parameters in Euler-Bernoulli Beam Models

  • Chapter
Book cover Computation and Control II

Part of the book series: Progress in Systems and Control Theory ((PSCT,volume 11))

  • 148 Accesses

Abstract

In the modeling and control of large flexible structures, one is often required to numerically recover one or more material parameters given data measurements at various points. Although these structures are in general very complex, in many cases the essential features can be developed by considering a fixed Euler-Bernoulli beam which is assumed to have KelvinVoigt damping. In this paper, a fully Sinc-Galerkin method is presented for the numerical recovery of the stiffness parameter EI and the damping parameter cDI in the state space model

$$\begin{array}{*{20}{c}} {\mathcal{L}(EI,{c_D}I)u = f(x,t),}&{0 < x < 1, t > 0} \\ {u(0,t) = u(1,t) = 0,}&{t > 0} \\ {\frac{{\partial u}}{{\partial x}}(0,t) = \frac{{\partial u}}{{\partial x}}(1,t) = 0,}&{t > 0} \\ {u(x,0) = \frac{{\partial u}}{{\partial t}}(x,0) = 0,}&{0 \leqslant x \leqslant 1} \end{array}$$
(1.1)

with

$$L\left( {E\operatorname{I} ,c_D I} \right)u \equiv \frac{{\partial ^2 u}} {{\partial t^2 }} + \frac{{\partial ^2 }} {{\partial x^2 }}\left( {EI\left( x \right)\frac{{\partial ^2 u}} {{\partial x^2 }} + c_D I\left( x \right)\frac{{\partial ^3 u}} {{\partial x^2 \partial t}}} \right),$$

, given measurements of the data at the points \( \left\{ {\left( {x_p ,t_q } \right)} \right\}\begin{array}{*{20}c} {q = 1, \ldots ,n_q } \\ {p = 1, \ldots ,n_p } \\ \end{array} \) in the domain (0,1) × ℝ+. From physical considerations, it is reasonable to let the admissible parameter set Q be defined by

$$Q = \left\{ {(EI,{c_D}I) \in \prod\limits_{k = 1}^2 {{H^2}(0,1):EI(x) \geqslant E{I_0} > 0,{c_D}I(x) \geqslant 0} } \right\}$$

(see [5]). With this definition, the existence of a unique soLution u to the forward problem can be obtained on any fixed time interval [0,τ],τ > 0, for f sufficiently smooth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.T. Banks, J.M. Crowley and I.G. Rosen, “Methods for the Identification of Material Parameters in Distributed Models for Flexible Structures,” Mat.Aplic. Comp.v. 5, 1986, pp. 139–168.

    Google Scholar 

  2. J.E. Dennis and R.B. SchnabelNumerical Methods for Unconstrained Optimization and NonlinearEquation, Prentice Hall, Englewood Cliffs, NJ, 1983.

    Google Scholar 

  3. P.C. HANSEN, “Analysis of Discrete Ill-Posed Problems by Means of the L-curve, ” preprint.

    Google Scholar 

  4. K. Jonca and C.R. Vogel, “Numerical SoLution to the Magnetic Relief Problem,”Transport Theory Invariant Imbedding and Integral Equations(Lecture Notesin Pure and AppliedMathematics), ed. P. Nelson et al, Marcel Dekker, New York, 1989, pp. 379–391.

    Google Scholar 

  5. K. Kunisch and E. Graif, “Parameter Estimation for the Euler-Bernoulli Beam,” Mat.Aplic. Comp.v. 4, 1985, pp. 95–124.

    Google Scholar 

  6. P. Lancaster and M. TismenetskyThe Theory of MatricesAcademic Press, Orlando, FL, 1985.

    Google Scholar 

  7. J. Lund and C.R. Vogel, “A Fully-Galerkin Method for the SoLution of Inverse Problems in Parabolic Partial Differential Equations,”Inv. Prob.v. 6, 1990, pp. 205–217.

    Article  Google Scholar 

  8. K.M. Mcarthur, K.L. Bowers and J. Lund, “The Sinc Method in Multiple Space Dimensions: Model Problems,”Numer. Math.v. 56, 1990, pp. 789–816.

    Article  Google Scholar 

  9. K. Miller, “Least Squares Methods for Ill-Posed Problems with a Prescribed Bound,” SIAM J. Math. Anal., v. 1, 1970, pp. 52–74.

    Article  Google Scholar 

  10. R.C. Smith, K.L. Bowers and J. Lund, “A Fully Sinc-Galerkin Method for Euler-Bernoulli Beam Models,” preprint.

    Google Scholar 

  11. R.C. Smith, K.L. Bowers and C.R. Vogel, “Numerical Recovery of Material Parameters in Euler-Bernoulli Beam Models,” preprint.

    Google Scholar 

  12. F. Stenger, “A Sinc-Galerkin Method of SoLution of Boundary VaLue Problems,” Math.Comp.v. 33, 1979, pp. 85–109.

    Google Scholar 

  13. A.N. Tikhonov and V.Y. ArseninSoLutions of Ill-Posed ProblemsWiley, New York, 1977.

    Google Scholar 

  14. G. Wahba, “Practical Approximate SoLutions to Linear Operator Equations when the Data are Noisy,”SIAM J. Numer. Anal.v. 14, 1977, pp. 651–667.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Smith, R.C., Bowers, K.L. (1991). A Fully Galerkin Method for the Recovery of Stiffness and Damping Parameters in Euler-Bernoulli Beam Models. In: Bowers, K., Lund, J. (eds) Computation and Control II. Progress in Systems and Control Theory, vol 11. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0427-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0427-5_20

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-3611-1

  • Online ISBN: 978-1-4612-0427-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics