Skip to main content

Part of the book series: Contemporary Issues in Biomedicine, Ethics, and Society ((CIBES))

Abstract

Free radical mechanisms have been associated with a large number of disease states, such as, inflammation, ischemiareperfusion injury, neoplasia, and aging. The elucidation of the mechanisms by which individual free radical species mediate tissue injury will further our understanding of both normal development and disease. The foci of this review are to: (1) identify the sources of free radicals in a number of disease states; (2) assess the enzymatic and nonenzymatic systems operative; and (3) review the free radical induced injury seen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. G. Allen, and A. K. Balin. Oxidative influence on development and differentiation: An overview of a free radical theory of development. J. Free Rad. Biol. Med. 6, 631–661 (1989).

    CAS  Google Scholar 

  2. D. J. Al-Timimi and T. L. Dormandy. The inhibition of lipid autoxidation by human caeruloplasmin. Biochem. J. 168, 283–288 (1977).

    PubMed  CAS  Google Scholar 

  3. E. Antonini, M. Brunori, C. Greenwood and B. G. Malmstrom. Catalytic mechanism of cytochrome oxidase. Nature 228, 936, 937 (1970).

    Google Scholar 

  4. D. Armstrong. Free radical involvement in the formation of lipopigments. In Free Radicals in Molecular Biology, Aging and Disease, D. Armstrong, R. S. Sohal, R. G. Cutler, and T. F. Slater, eds., Raven, New York, 1984, pp. 129–141.

    Google Scholar 

  5. N. N. Aronson Jr. and E. A. Davidson. Lysosomal hyaluronidase. J. Biol. Chem. 240, PC3222–3224 (1965).

    CAS  Google Scholar 

  6. B. M. Babior. Oxygen-dependent microbial killing by phagocytes. Part 1. N. Eng. J. Med. 298, 659–668 (1978).

    CAS  Google Scholar 

  7. B. M. Babior. Oxygen-dependent microbial killing by phagocytes. Part 2. N. Eng. J. Med. 298, 721–725 (1978b).

    CAS  Google Scholar 

  8. E. A. Balazs. The physical properties of synovial fluid and the special role of hyaluronic acid. In Disorders of the Knee, J. Helfet, ed., J. P. Lippincott Co., Philadelphia, 1974, pp. 63–75.

    Google Scholar 

  9. W. H. Bannister and J. V. Bannister. Factor analysis of the activities of superoxide dismutase, catalase and glutathione peroxidase in normal tissues and neoplastic cell lines. Free Rad. Res. Commun. 4, 1–13 (1987).

    CAS  Google Scholar 

  10. C. O. Beauchamp and I. Fridovich. Isozymes of superoxide dismutase from wheat germ. Biochim. Biophys. Acta 317, 50–64 (1973).

    PubMed  CAS  Google Scholar 

  11. D. Bellus. Quenchers of singlet oxygen—A critical review. In Singlet Oxygen. Reactions With Organic Compounds and Polymers, B. Ranby and J. F. Rabek, eds., John Wiley, New York, 1978, pp. 86, 87.

    Google Scholar 

  12. P. Biemond, A. J. G. Swaak, H. G. Van Eijk and J. F. Koster. Superoxide dependent iron release from ferritin in inflammatory diseases. J. Free Radical Biol. Med. 4, 185–198 (1988).

    CAS  Google Scholar 

  13. D. M. Blech and C. L. Borders. Hydroperoxide anion HOZ- is an affinity reagent for the inactivation of yeast Cu, Zn superoxide dismutase: Modification of one histidine per subunit. Arch. Biochem. Biophys. 224, 579–586 (1983).

    PubMed  CAS  Google Scholar 

  14. J. Blum and I. Fridovich. Inactivation of glutathione peroxidase by superoxide radical. Arch. Biochem. Biophys. 240, 500–508 (1985).

    PubMed  CAS  Google Scholar 

  15. J. M. Braughler, J. F. Pregenzer, R. L. Chase, L. A. Duncan, E. J. Jacobsen, and J. M. McBall. Novel 21-amino steroids as potent inhibitors of iron dependent lipid peroxidation. J. Biol. Chem. 262, 10, 438–410, 440 (1987).

    Google Scholar 

  16. A. Boveris. Mitochondrial production of superoxide radical and hydrogen peroxide. Adv. Exp. Med. Biol. 78,, 67–82 (1977).

    PubMed  CAS  Google Scholar 

  17. A. Boveris, N. Oshino, and B. Chance. The cellular production of hydrogen peroxide. Biochem. J. 128, 617–630 (1972).

    PubMed  CAS  Google Scholar 

  18. G. W. Burton and K. U. Ingold. 13-carotene: An unusual type of lipid antioxidant. Science 224, 569–573 (1984).

    PubMed  CAS  Google Scholar 

  19. H. Carp and A. Janoff. Phagocyte-derived oxidant suppress the elastaseinhibitory capacity of alpha-1-proteinase inhibitor in vitro. J. Clin. Invest. 66, 987–995 (1980).

    PubMed  CAS  Google Scholar 

  20. B. Chance, H. Sies and A. Boveris. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59, 527–605 (1979).

    PubMed  CAS  Google Scholar 

  21. M. Chevion. A site-specific mechanism for free radical induced biological damage: The essential role of redox-active transition metals. Free Rad. Biol. Med. 5, 27–37 (1989).

    Google Scholar 

  22. M. Cino and R. F. Del Maestro. Generation of hydrogen peroxide by brain mitochondria: The effects of reoxygenation following postdecapitative ischemia. Arch. Biochem. Biophys. 269, 623–638 (1989).

    PubMed  CAS  Google Scholar 

  23. G. G. Corbucci, A. Gasparetta, A. Candiani, G. Crimi, M. Antonelli, M. Bufi, R. A. De Blasi, M. B. Cooper, and K. Gohil. Shock-induced damage to mitochondrial function and cellular antioxidant mechanisms in humans. Circ. Shock 15, 15–26 (1985).

    PubMed  CAS  Google Scholar 

  24. R. T. Dean, and K. H. Cheeseman. Vitamin E protects against free radical damage in lipid environments. Biochem. Biophys. Res. Commun. 148, 12771282 (1987).

    Google Scholar 

  25. R. F. Del Maestro. An approach to free radicals in medicine and biology. Acta Physiol. Scand. Suppl. 492, 153–168 (1980).

    PubMed  Google Scholar 

  26. R. F. Del Maestro. Role of superoxide anion radicals in microvascular permeability and leukocyte behavior. Can. J. Physiol. Pharmacol. 60, 14061414 (1982).

    Google Scholar 

  27. R. F. Del Maestro, J. Bjork, and K.-E. Arfors. Increase in microvascular permeability induced by enzymatically generated free radicals. I. In vivo study. Microvasc. Res. 22, 239–254 (1981a).

    Google Scholar 

  28. R. F. Del Maestro, J. Bjork, and K.-E. Arfors. Increase in microvascular permeability induced by enzymatically generated free radicals. II. Role of superoxide anion radical, hydrogen peroxide, and hydroxyl radicals. Microvasc. Res. 22, 255–270 (1981b).

    Google Scholar 

  29. R. F. Del Maestro, and W. McDonald. Distribution of superoxide dis-mutase, glutathione peroxidase, and catalase in developing rat brain. Mech. Aging Dev. 41, 29–38 (1987).

    PubMed  Google Scholar 

  30. R. F. Del Maestro and W. McDonald. Subcellular localization of superoxides, glutathione peroxidase, and catalase in developing rat cerebral cortex. Mech. Aging Dev. 48, 15–31 (1989).

    PubMed  Google Scholar 

  31. R. F. Del Maestro, W. McDonald, and R. Anderson. Superoxide dis-mutases, catalase, and glutathione peroxidase in experimental and human brain tumours. In Oxy Radicals and Their Scavenging Systems (vol. 2), R. Greenwald and G. Cohen, eds., Elsevier, Amsterdam, 1983, pp. 28–35.

    Google Scholar 

  32. R. F. Del Maestro, M. Planker, and K. -E. Arfors. Evidence for the participation of superoxide anion radical in altering the adhesive interaction between granulocytes and endothelium in vivo. Int. J. Microcirc.: Clin. Exp. 1, 105–120 (1982).

    Google Scholar 

  33. H. B. Dempoulos, E. S. Flamm, D. D. Pietronigro, and M. L. Seligman. The free radical pathology and the microcirculation in the central nervous system. Acta Scand. Suppl. 492, 91–120 (1980).

    Google Scholar 

  34. B. Dewald, M. Baggiolini, J. T. Curnutte, and B. M. Babior. Subcellular localization of the superoxide forming enzyme in human neutrophils. J. Clin. Invest. 63, 21–29 (1979).

    PubMed  CAS  Google Scholar 

  35. T. L. Dormandy. Free radical oxidations and antioxidants. Lancet II, 647–650 (1978).

    Google Scholar 

  36. J. A. Fee and J. S. Valentine. Chemical and physical properties of superoxide. In Superoxide and Superoxide Dismutases, A. M. Michelson, J. M. McCord, and I. Fridovich, eds., Academic, New York, 1977, pp. 19–60.

    Google Scholar 

  37. R. Ferrari, C. Ceconi, S. Curello, C. Guarnieri, C. M. Caldarera, A. Albertini, and O. Visioli. Oxygen-mediated myocardial damage during ischemia and reperfusion: role of the cellular defenses against oxygen toxicity. J. Mol. Cell Cardiol. 17, 937–945 (1985).

    PubMed  CAS  Google Scholar 

  38. L. Flohé. Glutathione peroxidase brought into focus. In Free Rad. in Biol., vol. 5, W. Pryor, ed., Academic, New York, 1982, pp. 295–319.

    Google Scholar 

  39. R. A. Floyd, M. M. Zaleska, and H. J. Harmon. Possible involvement of iron and oxygen free radicals in aspects of aging in brain. In Free Radicals in Molecular Biology, Aging and Disease, D. Armstrong, ed., Raven Press, New York, 1984, pp. 143–161.

    Google Scholar 

  40. C. S. Foote, R. B. Abakerli, R. L. Clough, and F. C. Shook. On the question of singlet oxygen production in leukocytes, macrophages and the dismutation of superoxide anion. In Biological and Clinical Aspects of Superoxide and Superoxide Dismutase, vol. 11B, W. H. Bannister and J. V. Bannister, eds., Elsevier/North Holland, New York, 1980, pp. 222–230.

    Google Scholar 

  41. I. Fridovich. Superoxide dismutases. Ann. Rev. Biochem. 44, 147–159 (1975).

    PubMed  CAS  Google Scholar 

  42. I. Fridovich. The biology of oxygen radicals. Science 201, 875–880 (1978).

    PubMed  CAS  Google Scholar 

  43. I. Fridovich. Superoxide radical: An endogenous toxicant. Ann. Rev. Pharmacol. Toxicol. 23, 239–257 (1983).

    CAS  Google Scholar 

  44. H. W. Gardner. Oxygen radical chemistry of polyunsaturated fatty acids. Free Rad. Biol. Med. 7, 65–86 (1983).

    Google Scholar 

  45. I. M. Goldstein, H. B. Kaplan, H. S. Edelson, and G. Weissman. Ceruloplasmin: A scavenger of superoxide anion radicals. J. Biol. Chem. 254, 4040–4045 (1979).

    PubMed  CAS  Google Scholar 

  46. J. D. Gower. A role for dietary lipids and antioxidants in the activation of carcinogens. Free Rad. Biol. Med. 5, 95–111 (1988).

    PubMed  CAS  Google Scholar 

  47. D. N. Granger, G. Rutili, and J. M. McCord. Superoxide radicals in feline intestinal ischemia. Gastroenterology 78, 474–480 (1981).

    Google Scholar 

  48. R. A. Greenwald. Effects of oxygen-derived free radicals on connective tissue macromolecules. In Biological and Clinical Aspects of Superoxide and Superoxide Dismutase, vol. 11B, W. H. Bannister and J. V. Bannister, eds., Elsevier/North Holland, New York, 1980, pp. 160–171.

    Google Scholar 

  49. R. A. Greenwald, and W. W. Moy. Inhibition of collagen gelatin by action of the superoxide radical. Arthritis Rheum. 22, 251–259 (1979).

    PubMed  CAS  Google Scholar 

  50. A. Grossman and A. Wendel. Nonreactivity of the selenoenzyme glutathione peroxidase with enzyme-generated hydroperoxide phospholipids. Eur. J. Biochem. 135, 549–552 (1984).

    Google Scholar 

  51. F. Haber and J. Weiss. The catalytic decomposition of hydrogen peroxide by iron salts. Proc. Roy. Soc. Ser. A 147, 332–351 (1934).

    Google Scholar 

  52. E. D. Hall. Effects of the 21-aminosteroid U74006F on posttraumatic spinal cord ischemia. J. Neurosurg. 68, 462–465 (1988).

    PubMed  CAS  Google Scholar 

  53. E. D. Hall, K. P. Berry, and J. M. Braughler. The 21-aminosteroid lipid peroxidation inhibitor U74006F protects against cerebral ischemia in gerbils. Stroke 19, 997–1002 (1988).

    PubMed  CAS  Google Scholar 

  54. E. D. Hall, and D. A. Yonkers. Attenuation of postischemic cerebral hypo-perfusion by the 21-aminosteroid U74006F. Stroke 19, 340–344 (1988).

    PubMed  CAS  Google Scholar 

  55. E. D. Hall, D. A. Yonkers, J. M. McCall, and J. M. Braughler. Effects of the 21-aminosteroid U74006F on experimental head injury in mice. J. Neurosurg. 68, 456–461 (1988).

    PubMed  CAS  Google Scholar 

  56. B. Halliwell. Biochemical mechanisms accounting for the toxic action of oxygen on living organisms: The key role of superoxide dismutase. Cell Biol. Int. Rep. 2, 113–128 (1978a).

    CAS  Google Scholar 

  57. B. Halliwell. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. FEBS Lett. 96, 238–242 (1978b).

    CAS  Google Scholar 

  58. B. Halliwell. Superoxide-dependent formation of hydroxyl radicals in the presence of iron chelates. Is it a mechanism for hydroxyl radical production in biological systems? FEBS Lett. 92, 321–326 (1978c).

    CAS  Google Scholar 

  59. B. Halliwell. Invited Commentary. Superoxide, iron, vascular endothelium, and reperfusion injury. Free Rad. Res. Commun. 5, 315–318 (1989).

    CAS  Google Scholar 

  60. R. Hansson, B. Gustafsson, O. Jonsson, S. Lundstam, S. Pettersson, T. Schersten, and J. Waldenstrom. Effect of xanthine oxidase inhibition on renal circulation after ischemia. Transplantation Proc. 14, 51–58 (1982).

    CAS  Google Scholar 

  61. D. Harman. Aging: A theory based on free radical and radiation chemistry. Univ. Cal. Rad. Lab. Rep. No. 3078 (1955).

    Google Scholar 

  62. D. Harman. Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 11, 298–300 (1956).

    PubMed  CAS  Google Scholar 

  63. W. K. Hass. Beyond cerebral blood flow, metabolism, and ischemic thresholds: Examination of the role of calcium in the initiation of cerebral infarction. In Cerebral Vascular Disease, vol. 3, Proceedings of the 10th Salzburg Conference on Cerebral Vascular Disease, J. S. Meyer, H. Lechner, M. Reivich, E. O. Ott, and A. Arabinar, eds., Excerpta Medica, Amsterdam, 1981, pp. 3–17.

    Google Scholar 

  64. H. M. Hassan. Biosynthesis and regulation of superoxide dismutases. Free Rad. Biol. Med. 5, 377–385.

    Google Scholar 

  65. D. J. Hearse, A. S. Manning, J. M. Downey, and D. M. Yellon. Xanthine oxidase: A critical mediator of myocardial injury during ischemia and reperfusion? Acta Physiol. Scand. Suppl. 548, 65–78 (1986).

    PubMed  CAS  Google Scholar 

  66. L. Hillered and L. Ernster. Respiratory activity of isolated rat brain mitochondria following in vitro exposure to oxygen radicals. J. Cereb. Blood Flow Metabol. 3, 207–214 (1983).

    CAS  Google Scholar 

  67. D. Jamieson, B. Chance, E. Cadenas, and A. Boveris. The relation of free radical production to hyperoxia. Ann. Rev. Physiol. 48, 703–719 (1986).

    CAS  Google Scholar 

  68. E. D. Jarasch, G. Bruder, and H. W. Heid. Significance of xanthine oxidase in capillary endothelial cells. Acta Physiol. Scand. Suppl. 548, 39–46 (1986).

    PubMed  CAS  Google Scholar 

  69. S. L. Jewett, L. J. Eddy, and P. Hochstein. Is the autoxidation of catecholamines involved in ischemia-reperfusion injury? Free Rad. Biol. Med. 6, 185–188.

    Google Scholar 

  70. J. R. Kanofsky, J. Wright, G. E. Miles-Richardson, and A. I. Tauber. Biochemical requirements for singlet oxygen production by purified human myeloperoxidase. J. Clin. Invest. 74, 1489–1495 (1984).

    PubMed  CAS  Google Scholar 

  71. H. Kohler, and H. Jenzer. Interaction of lactoperoxidase with hydrogen peroxide. Formation of enzyme intermediates and generation of free radicals. J. Free Rad. Biol. Med. 6, 323–339 (1989).

    CAS  Google Scholar 

  72. Y. Kono, and I. Fridovich. Superoxide radical inhibits catalase. J. Biol. Chem. 257, 5751–5754 (1982).

    PubMed  CAS  Google Scholar 

  73. Y. Kono, and I. Fridovich. Isolation and characterization of the pseudocatalase of lactobacillus plantarum. J. Biol. Chem. 258, 6015–6019 (1983).

    PubMed  CAS  Google Scholar 

  74. H. A. Kontos. Oxygen radicals in cerebral vascular injury. Circ. Res. 57, 508–516 (1985).

    PubMed  CAS  Google Scholar 

  75. W. H. Koppenol, J. Butler, and J. W. van Leeuwen. The Haber-Weiss cycle. Photochem. Photobiol. 28, 655–660 (1978).

    CAS  Google Scholar 

  76. K. Ley and K.-E. Arfors. Changes in macromolecular permeability by intravascular generation of oxygen derived free radicals. Microvas. Res. 24, 25–33 (1982).

    CAS  Google Scholar 

  77. R. E. Lynch, and I. Fridovich. Effects of superoxide on the erythrocyte membrane. J. Biol. Chem. 253, 1838–1845 (1978).

    PubMed  CAS  Google Scholar 

  78. S. L. Marklund. Distribution of CuZn superoxide dismutase and Mn superoxide dismutase in human tissues and extracellular fluids. Acta Physiol. Scand. Suppl. 492, 19–23 (1980).

    PubMed  CAS  Google Scholar 

  79. S. L. Marklund. Human copper-containing superoxide dismutase of high mol wt. Proc. Natl. Acad. Sci. LISA 79, 7634–7638 (1982).

    CAS  Google Scholar 

  80. S. L. Marklund. Extracellular superoxide dismutase and other superoxide dismutase isoenzymes in tissues from nine mammalian species. Biochem. J. 222, 649–655 (1984).

    PubMed  CAS  Google Scholar 

  81. S. L. Marklund. Extracellular superoxide dismutase in human tissues and human cell lines. J. Clin. Invest. 74, 1398–1403 (1984).

    PubMed  CAS  Google Scholar 

  82. S. L. Marklund, N. G. Westman, E. Lundgren, and G. Roos. Copper-and zinc-containing superoxide dismutase, manganese-containing superoxide dismutase, catalase, and glutathione peroxidase in normal and neoplastic human cell lines and normal human tissues. Cancer Res. 42, 1955–1961 (1982).

    PubMed  CAS  Google Scholar 

  83. F. Marlhens, A. Nicole, and P. M. Sinet. Lowered levels of translatable messenger RNAs for manganese superoxide dismutase in human fibroblasts transformed by SV40. Biochem. Biophys. Res. Commun. 129, 300305 (1985).

    Google Scholar 

  84. A. Masuda, D. L. Long, Y. Kobayashi, E. Appella, J. J. Oppenheim, and K. Matsushima. Induction of mitochondrial manganese superoxide dismutase by interleukin 1. FASEB J. 2, 3087–3091 (1988).

    PubMed  CAS  Google Scholar 

  85. J. M. McCord. Free radicals and inflammation: Protection of synovial fluid by superoxide dismutase. Science 185, 529–531 (1974).

    PubMed  CAS  Google Scholar 

  86. J. M. McCord. Oxygen-derived free radicals in postischemic tissue injury. N. Engl. J. Med. 312, 159–163 (1985).

    PubMed  CAS  Google Scholar 

  87. J. M. McCord. Free radicals and myocardial ischemia: Overview and outlook. J. Free Rad. Biol. Med. 4, 9–14 (1988).

    CAS  Google Scholar 

  88. J. M. McCord and E. D. Day. Superoxide-dependent production of hydroxyl radical catalyzed by iron-EDTA complex. FEBS Lett. 86, 139–142 (1978).

    PubMed  CAS  Google Scholar 

  89. J. M. McCord and I. Fridovich. Superoxide dismutase: An enzymatic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049–6055 (1969).

    PubMed  CAS  Google Scholar 

  90. J. M. McCord, K. Wong, S. H. Stokes, W. F. Petrone, and D. English. Superoxide and inflammation: A mechanism for the antiinflammatory activity of superoxide dismutase. Acta Physiol. Scand. Suppl. 492, 25–30 (1980).

    PubMed  CAS  Google Scholar 

  91. E. Metchnikoff. Immunity in infective diseases. Johnson Reprint Corp., New York and London, 1905.

    Google Scholar 

  92. J. Miguel and J. E. Fleming. A two-step hypothesis on the mechanism of in vitro cell aging: Cell differentiation followed by intrinsic mitochondrial mutagenesis. Exp. Gerontol. 19, 31–36 (1984).

    Google Scholar 

  93. H. P. Misra, and I. Fridovich. The generation of superoxide radical during the autoxidation of ferredoxin. J. Biol. Chem. 240, 6886–6890 (1971).

    Google Scholar 

  94. H. Nohl. Oxygen radical release in mitochondria: Influence of age. In Free Radicals, Aging and Degenerative Diseases, J. E. Johnson, Jr., R. Walford, D. Harman, and J. Miguel, eds., Alan R. Liss, New York, 1986, pp. 77–97.

    Google Scholar 

  95. H. Nohl and D. Hegner. Do mitochondria produce oxygen radicals in vitro? Eur. J. Biochem. 82, 563–567 (1978).

    PubMed  CAS  Google Scholar 

  96. H. Nohl, D. Hegner, and K. H. Summer. The mechanism of toxic action of hyperbaric oxygenation on the mitochondria of rat heart cells. Biochem. Pharmacol. 30, 1753–1757 (1981).

    PubMed  CAS  Google Scholar 

  97. L. W. Oberley, M. L. McCormick, E. Sierra-Rivera, and D. Kasemset-St. Clair. Manganese superoxide dismutase in normal and transformed human embryonic lung fibroblasts. J. Free Rad. Biol. Med. 6, 379–384.

    Google Scholar 

  98. L. W. Oberley, T. D. Oberley, and G. R. Buettner. Cell division in normal and transformed cells: The possible role of superoxide and hydrogen peroxide. Med. Hypotheses 7, 21–42 (1981).

    PubMed  CAS  Google Scholar 

  99. D. A. Parks, and D. N. Granger. Xanthine oxidase: Biochemistry, distribution and physiology. Acta Physiol. Scand. Suppl. 548, 87–99 (1986).

    PubMed  CAS  Google Scholar 

  100. M. S. Patole, A. Swaroop, and T. Ramasarma. Generation of H2O2 in brain mitochondria. J. Neurochem. 47, 1–8 (1986).

    PubMed  CAS  Google Scholar 

  101. H. D. Perez, and I. M. Goldstein. Generation of a chemotactic lipid from arachidonic acid by exposure to a superoxide-generating system. Fed. Proc. 38, 1170 (1979).

    Google Scholar 

  102. H. D. Perez, B. B. Weksler, and I. M. Goldstein. Generation of a chemotactic lipid from arachidonic acid by exposure to a superoxide-generating system. Inflammation 4, 313–328 (1980).

    PubMed  CAS  Google Scholar 

  103. W. A. Pryor. The role of free radical reactions in biological systems. In Free Radicals in Biology, vol. 1, W. Pryor, ed., Academic, New York, 1976, pp. 149.

    Google Scholar 

  104. M. Rister, and R. L. Baehner. The alteration of superoxide dismutase, catalase, glutathione peroxidase and NAD(P)H cytochrome-c reductase in guinea pig polymorphonuclear leukocytes and alveolar macrophages during hypoxia. J. Clin. Invest. 58, 1174–1184 (1976).

    PubMed  CAS  Google Scholar 

  105. R. K. Root and J. A. Metcalf. H2O2 release from human granulocytes during phagocytosis. Relationship to superoxide anion formation and cellular catabolism of H2O2: Studies with normal and cytochalasin B-treated cells. J. Clin. Invest. 60, 1266–1279 (1977).

    PubMed  CAS  Google Scholar 

  106. H. Rosen, and S. J. Klebanoff. Bactericidal activity of a superoxide anion generating system. A model for the polymorphonuclear leukocyte. J. Exp. Med. 149, 27–39 (1979).

    PubMed  CAS  Google Scholar 

  107. D. Rowley, J. M. C. Gutteridge, D. Blake, M. Farr, and B. Halliwell. Lipid peroxidation in rheumatoid arthritis: Thiobarbituric acid reactive material and catalytic iron salts in synovial fluid from rheumatoid arthritis patients. Clin. Sci. 66, 691–695 (1984).

    PubMed  CAS  Google Scholar 

  108. D. C. Salo, S. W. Lin, R. E. Pacifici, and K. J. A. Davies. Superoxide dismutase is preferentially degraded by a proteolytic system from red blood cells following oxidative modification by hydrogen peroxide. J. Free Rad. Biol. Med. 5, 335–339 (1988).

    CAS  Google Scholar 

  109. A. Sammuni, M. Chevion, and G. Czapski. Unusual copper-induced sensitization of the biological damage due to superoxide radicals. J. Biol. Chem. 256, 12632–12635 (1981).

    Google Scholar 

  110. O. D. Saugstad, and A. O. Aasen. Plasma hypoxanthine concentrations in pigs—A prognostic aid in hypoxia. Eur. Surg. Res. 12, 123–129 (1980).

    PubMed  CAS  Google Scholar 

  111. G. W. Schmid-Schonbein. Capillary plugging by granulocytes and the noreflow phenomenon in the microcirculation. Fed. Proc. 46, 2397–2401.

    Google Scholar 

  112. G. W. Schmid-Schoenbien, and R. L. Engler. Leukocyte capillary plugging in myocardial ischemia and during reperfusion in the dog. Am. J. Pathol.: 98–111 (1983).

    Google Scholar 

  113. J. A. Scott, A. J. Fischman, J. Homey, J. T. Fallon, B. A. Khan, C. A. Peto, and C. A. Rabito. Morphologic and functional correlates of plasma membrane injury during oxidant exposure. J. Free Rad. Biol. Med. 6, 361–367 (1989).

    CAS  Google Scholar 

  114. M. Shlafer, C. L. Myers, and S. Adkins. Mitochondrial hydrogen peroxide generation and activities of glutathione peroxidase and superoxide dis-mutase following global ischemia. J. Mol. Cell Cardiol. 19, 1195–1206 (1987).

    PubMed  CAS  Google Scholar 

  115. H. C. Sutton, and C. C. Winterbourn. On the participation of higher oxidation states of iron and copper in Fenton reactions. J. Free Rad. Biol. Med. 6, 53–60 (1989).

    CAS  Google Scholar 

  116. J. Travis, and G. S. Salvesen. Human plasma proteinase inhibitors. Ann. Rev. Biochem. 52, 655–709 (1983).

    PubMed  CAS  Google Scholar 

  117. P. O. P. Ts’o, W. J. Caspary, and R. J. Lorentzen. The involvement of free radicals in chemical carcinogenesis. In Free Radicals in Biology, vol. 3, W. Pryor, ed., Academic, New York, 1977, pp. 251–303.

    Google Scholar 

  118. J. F. Turrens, B. A. Freeman, and J. D. Crapo. Hyperoxia increases H2O2 release by lung mitochondria and microsomes. Arch. Biochem. Biophys. 217, 411–421 (1982)

    PubMed  CAS  Google Scholar 

  119. J. F. Turrens, B. A. Freeman, J. G. Levitt, and J. D. Crapo. The effect of hyperoxia on superoxide production by lung submitochondrial particles. Arch. Biochem. Biophys. 217, 401–410 (1982).

    PubMed  CAS  Google Scholar 

  120. F. Ursini, M. Maiorino, M. Valente, L. Ferri, and C. Gregolin. Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochem. Biophys. Acta 710, 197211 (1982).

    Google Scholar 

  121. D. G. Vollmer, N. F. Kassell, K. Hongo, H. Ogawa, and T. Tsukahara. Effect of the nonglcocorticoid 21-aminosteroid U74006F on experimental cerebral vasospasm. Surg. Neurol. 31, 190–194 (1989).

    PubMed  CAS  Google Scholar 

  122. S. J. Weiss. Oxygen, ischemia and inflammation. Acta Physiol. Scand. Suppl. 548, 9–37 (1986).

    PubMed  CAS  Google Scholar 

  123. S. J. Weiss, R. Klein, A. Slivka, and M. Wei. Chlorination of taurine by human neutrophils: Evidence for hypochlorous acid generation. J. Clin. Invest. 70, 598–607 (1982).

    PubMed  CAS  Google Scholar 

  124. S. J. Weiss, M. B. Lampert, S. T. Test. Long-lived oxidants generated by human neutrophils characterization and bioactivity. Science 222, 625–628 (1983).

    PubMed  CAS  Google Scholar 

  125. S. J. Weiss, J. Young, A. F. LoBuglio, A. Slivka, and N. F. Nimek. Role of hydrogen peroxide in neutrophil-mediated destruction of cultured endothelial cells. J. Clin. Invest. 68, 714–721 (1981).

    PubMed  CAS  Google Scholar 

  126. S. W. Werns, and B. R. Lucchesi. Leukocytes, oxygen radicals and myocardial injury due to ischemia and reperfusion. Free Rad. Biol. Med. 4, 31–37 (1987).

    Google Scholar 

  127. C. C. Winterbourn. Hydroxyl radical production in body fluids. Roles of metal ions, ascorbate and superoxide. Biochem. J. 198, 125–131 (1981).

    PubMed  CAS  Google Scholar 

  128. L. A. Witting. Vitamin E and lipid antioxidants in free radical initiated reactions. In Free Radicals in Biology, W. Pryor, ed., Academic, New York, 1982, pp. 295–319.

    Google Scholar 

  129. G. H. W. Wong, and D. V. Goeddel. Induction of manganese superoxide dismutase by tumour necrosis factor: Possible protective mechanism. Science 242, 941–944 (1988).

    PubMed  CAS  Google Scholar 

  130. S. Yamashogi and G. Kajimoto. Antioxidant effect of ceruloplasmin on microsomal lipid peroxidation. FEBS Lett. 152, 168 (1983).

    Google Scholar 

  131. M. Zuccarello, and D. K. Anderson. Protective effect of a 21-aminosteroid on the blood-brain barrier following subarachnoid hemorrhage in rats. Stroke 20, 367–371 (1989).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Del Maestro, R. (1991). Free Radicals as Mediators of Tissue Injury. In: Dreosti, I.E. (eds) Trace Elements, Micronutrients, and Free Radicals. Contemporary Issues in Biomedicine, Ethics, and Society. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0419-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0419-0_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6754-6

  • Online ISBN: 978-1-4612-0419-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics