Free Radicals as Mediators of Tissue Injury

  • Rolando Del Maestro
Part of the Contemporary Issues in Biomedicine, Ethics, and Society book series (CIBES)


Free radical mechanisms have been associated with a large number of disease states, such as, inflammation, ischemiareperfusion injury, neoplasia, and aging. The elucidation of the mechanisms by which individual free radical species mediate tissue injury will further our understanding of both normal development and disease. The foci of this review are to: (1) identify the sources of free radicals in a number of disease states; (2) assess the enzymatic and nonenzymatic systems operative; and (3) review the free radical induced injury seen.


Free Radical Superoxide Dismutase Hyaluronic Acid Synovial Fluid Glutathione Peroxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. G. Allen, and A. K. Balin. Oxidative influence on development and differentiation: An overview of a free radical theory of development. J. Free Rad. Biol. Med. 6, 631–661 (1989).Google Scholar
  2. 2.
    D. J. Al-Timimi and T. L. Dormandy. The inhibition of lipid autoxidation by human caeruloplasmin. Biochem. J. 168, 283–288 (1977).PubMedGoogle Scholar
  3. 3.
    E. Antonini, M. Brunori, C. Greenwood and B. G. Malmstrom. Catalytic mechanism of cytochrome oxidase. Nature 228, 936, 937 (1970).Google Scholar
  4. 4.
    D. Armstrong. Free radical involvement in the formation of lipopigments. In Free Radicals in Molecular Biology, Aging and Disease, D. Armstrong, R. S. Sohal, R. G. Cutler, and T. F. Slater, eds., Raven, New York, 1984, pp. 129–141.Google Scholar
  5. 5.
    N. N. Aronson Jr. and E. A. Davidson. Lysosomal hyaluronidase. J. Biol. Chem. 240, PC3222–3224 (1965).Google Scholar
  6. 6.
    B. M. Babior. Oxygen-dependent microbial killing by phagocytes. Part 1. N. Eng. J. Med. 298, 659–668 (1978).Google Scholar
  7. 7.
    B. M. Babior. Oxygen-dependent microbial killing by phagocytes. Part 2. N. Eng. J. Med. 298, 721–725 (1978b).Google Scholar
  8. 8.
    E. A. Balazs. The physical properties of synovial fluid and the special role of hyaluronic acid. In Disorders of the Knee, J. Helfet, ed., J. P. Lippincott Co., Philadelphia, 1974, pp. 63–75.Google Scholar
  9. 9.
    W. H. Bannister and J. V. Bannister. Factor analysis of the activities of superoxide dismutase, catalase and glutathione peroxidase in normal tissues and neoplastic cell lines. Free Rad. Res. Commun. 4, 1–13 (1987).Google Scholar
  10. 10.
    C. O. Beauchamp and I. Fridovich. Isozymes of superoxide dismutase from wheat germ. Biochim. Biophys. Acta 317, 50–64 (1973).PubMedGoogle Scholar
  11. 11.
    D. Bellus. Quenchers of singlet oxygen—A critical review. In Singlet Oxygen. Reactions With Organic Compounds and Polymers, B. Ranby and J. F. Rabek, eds., John Wiley, New York, 1978, pp. 86, 87.Google Scholar
  12. 12.
    P. Biemond, A. J. G. Swaak, H. G. Van Eijk and J. F. Koster. Superoxide dependent iron release from ferritin in inflammatory diseases. J. Free Radical Biol. Med. 4, 185–198 (1988).Google Scholar
  13. 13.
    D. M. Blech and C. L. Borders. Hydroperoxide anion HOZ- is an affinity reagent for the inactivation of yeast Cu, Zn superoxide dismutase: Modification of one histidine per subunit. Arch. Biochem. Biophys. 224, 579–586 (1983).PubMedGoogle Scholar
  14. 14.
    J. Blum and I. Fridovich. Inactivation of glutathione peroxidase by superoxide radical. Arch. Biochem. Biophys. 240, 500–508 (1985).PubMedGoogle Scholar
  15. 15.
    J. M. Braughler, J. F. Pregenzer, R. L. Chase, L. A. Duncan, E. J. Jacobsen, and J. M. McBall. Novel 21-amino steroids as potent inhibitors of iron dependent lipid peroxidation. J. Biol. Chem. 262, 10, 438–410, 440 (1987).Google Scholar
  16. 16.
    A. Boveris. Mitochondrial production of superoxide radical and hydrogen peroxide. Adv. Exp. Med. Biol. 78,, 67–82 (1977).PubMedGoogle Scholar
  17. 17.
    A. Boveris, N. Oshino, and B. Chance. The cellular production of hydrogen peroxide. Biochem. J. 128, 617–630 (1972).PubMedGoogle Scholar
  18. 18.
    G. W. Burton and K. U. Ingold. 13-carotene: An unusual type of lipid antioxidant. Science 224, 569–573 (1984).PubMedGoogle Scholar
  19. 19.
    H. Carp and A. Janoff. Phagocyte-derived oxidant suppress the elastaseinhibitory capacity of alpha-1-proteinase inhibitor in vitro. J. Clin. Invest. 66, 987–995 (1980).PubMedGoogle Scholar
  20. 20.
    B. Chance, H. Sies and A. Boveris. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59, 527–605 (1979).PubMedGoogle Scholar
  21. 21.
    M. Chevion. A site-specific mechanism for free radical induced biological damage: The essential role of redox-active transition metals. Free Rad. Biol. Med. 5, 27–37 (1989).Google Scholar
  22. 22.
    M. Cino and R. F. Del Maestro. Generation of hydrogen peroxide by brain mitochondria: The effects of reoxygenation following postdecapitative ischemia. Arch. Biochem. Biophys. 269, 623–638 (1989).PubMedGoogle Scholar
  23. 23.
    G. G. Corbucci, A. Gasparetta, A. Candiani, G. Crimi, M. Antonelli, M. Bufi, R. A. De Blasi, M. B. Cooper, and K. Gohil. Shock-induced damage to mitochondrial function and cellular antioxidant mechanisms in humans. Circ. Shock 15, 15–26 (1985).PubMedGoogle Scholar
  24. 24.
    R. T. Dean, and K. H. Cheeseman. Vitamin E protects against free radical damage in lipid environments. Biochem. Biophys. Res. Commun. 148, 12771282 (1987).Google Scholar
  25. 25.
    R. F. Del Maestro. An approach to free radicals in medicine and biology. Acta Physiol. Scand. Suppl. 492, 153–168 (1980).PubMedGoogle Scholar
  26. 26.
    R. F. Del Maestro. Role of superoxide anion radicals in microvascular permeability and leukocyte behavior. Can. J. Physiol. Pharmacol. 60, 14061414 (1982).Google Scholar
  27. 27.
    R. F. Del Maestro, J. Bjork, and K.-E. Arfors. Increase in microvascular permeability induced by enzymatically generated free radicals. I. In vivo study. Microvasc. Res. 22, 239–254 (1981a).Google Scholar
  28. 28.
    R. F. Del Maestro, J. Bjork, and K.-E. Arfors. Increase in microvascular permeability induced by enzymatically generated free radicals. II. Role of superoxide anion radical, hydrogen peroxide, and hydroxyl radicals. Microvasc. Res. 22, 255–270 (1981b).Google Scholar
  29. 29.
    R. F. Del Maestro, and W. McDonald. Distribution of superoxide dis-mutase, glutathione peroxidase, and catalase in developing rat brain. Mech. Aging Dev. 41, 29–38 (1987).PubMedGoogle Scholar
  30. 30.
    R. F. Del Maestro and W. McDonald. Subcellular localization of superoxides, glutathione peroxidase, and catalase in developing rat cerebral cortex. Mech. Aging Dev. 48, 15–31 (1989).PubMedGoogle Scholar
  31. 31.
    R. F. Del Maestro, W. McDonald, and R. Anderson. Superoxide dis-mutases, catalase, and glutathione peroxidase in experimental and human brain tumours. In Oxy Radicals and Their Scavenging Systems (vol. 2), R. Greenwald and G. Cohen, eds., Elsevier, Amsterdam, 1983, pp. 28–35.Google Scholar
  32. 32.
    R. F. Del Maestro, M. Planker, and K. -E. Arfors. Evidence for the participation of superoxide anion radical in altering the adhesive interaction between granulocytes and endothelium in vivo. Int. J. Microcirc.: Clin. Exp. 1, 105–120 (1982).Google Scholar
  33. 33.
    H. B. Dempoulos, E. S. Flamm, D. D. Pietronigro, and M. L. Seligman. The free radical pathology and the microcirculation in the central nervous system. Acta Scand. Suppl. 492, 91–120 (1980).Google Scholar
  34. 34.
    B. Dewald, M. Baggiolini, J. T. Curnutte, and B. M. Babior. Subcellular localization of the superoxide forming enzyme in human neutrophils. J. Clin. Invest. 63, 21–29 (1979).PubMedGoogle Scholar
  35. 35.
    T. L. Dormandy. Free radical oxidations and antioxidants. Lancet II, 647–650 (1978).Google Scholar
  36. 36.
    J. A. Fee and J. S. Valentine. Chemical and physical properties of superoxide. In Superoxide and Superoxide Dismutases, A. M. Michelson, J. M. McCord, and I. Fridovich, eds., Academic, New York, 1977, pp. 19–60.Google Scholar
  37. 37.
    R. Ferrari, C. Ceconi, S. Curello, C. Guarnieri, C. M. Caldarera, A. Albertini, and O. Visioli. Oxygen-mediated myocardial damage during ischemia and reperfusion: role of the cellular defenses against oxygen toxicity. J. Mol. Cell Cardiol. 17, 937–945 (1985).PubMedGoogle Scholar
  38. 38.
    L. Flohé. Glutathione peroxidase brought into focus. In Free Rad. in Biol., vol. 5, W. Pryor, ed., Academic, New York, 1982, pp. 295–319.Google Scholar
  39. 39.
    R. A. Floyd, M. M. Zaleska, and H. J. Harmon. Possible involvement of iron and oxygen free radicals in aspects of aging in brain. In Free Radicals in Molecular Biology, Aging and Disease, D. Armstrong, ed., Raven Press, New York, 1984, pp. 143–161.Google Scholar
  40. 40.
    C. S. Foote, R. B. Abakerli, R. L. Clough, and F. C. Shook. On the question of singlet oxygen production in leukocytes, macrophages and the dismutation of superoxide anion. In Biological and Clinical Aspects of Superoxide and Superoxide Dismutase, vol. 11B, W. H. Bannister and J. V. Bannister, eds., Elsevier/North Holland, New York, 1980, pp. 222–230.Google Scholar
  41. 41.
    I. Fridovich. Superoxide dismutases. Ann. Rev. Biochem. 44, 147–159 (1975).PubMedGoogle Scholar
  42. 42.
    I. Fridovich. The biology of oxygen radicals. Science 201, 875–880 (1978).PubMedGoogle Scholar
  43. 43.
    I. Fridovich. Superoxide radical: An endogenous toxicant. Ann. Rev. Pharmacol. Toxicol. 23, 239–257 (1983).Google Scholar
  44. 44.
    H. W. Gardner. Oxygen radical chemistry of polyunsaturated fatty acids. Free Rad. Biol. Med. 7, 65–86 (1983).Google Scholar
  45. 45.
    I. M. Goldstein, H. B. Kaplan, H. S. Edelson, and G. Weissman. Ceruloplasmin: A scavenger of superoxide anion radicals. J. Biol. Chem. 254, 4040–4045 (1979).PubMedGoogle Scholar
  46. 46.
    J. D. Gower. A role for dietary lipids and antioxidants in the activation of carcinogens. Free Rad. Biol. Med. 5, 95–111 (1988).PubMedGoogle Scholar
  47. 47.
    D. N. Granger, G. Rutili, and J. M. McCord. Superoxide radicals in feline intestinal ischemia. Gastroenterology 78, 474–480 (1981).Google Scholar
  48. 48.
    R. A. Greenwald. Effects of oxygen-derived free radicals on connective tissue macromolecules. In Biological and Clinical Aspects of Superoxide and Superoxide Dismutase, vol. 11B, W. H. Bannister and J. V. Bannister, eds., Elsevier/North Holland, New York, 1980, pp. 160–171.Google Scholar
  49. 49.
    R. A. Greenwald, and W. W. Moy. Inhibition of collagen gelatin by action of the superoxide radical. Arthritis Rheum. 22, 251–259 (1979).PubMedGoogle Scholar
  50. 50.
    A. Grossman and A. Wendel. Nonreactivity of the selenoenzyme glutathione peroxidase with enzyme-generated hydroperoxide phospholipids. Eur. J. Biochem. 135, 549–552 (1984).Google Scholar
  51. 51.
    F. Haber and J. Weiss. The catalytic decomposition of hydrogen peroxide by iron salts. Proc. Roy. Soc. Ser. A 147, 332–351 (1934).Google Scholar
  52. 52.
    E. D. Hall. Effects of the 21-aminosteroid U74006F on posttraumatic spinal cord ischemia. J. Neurosurg. 68, 462–465 (1988).PubMedGoogle Scholar
  53. 53.
    E. D. Hall, K. P. Berry, and J. M. Braughler. The 21-aminosteroid lipid peroxidation inhibitor U74006F protects against cerebral ischemia in gerbils. Stroke 19, 997–1002 (1988).PubMedGoogle Scholar
  54. 54.
    E. D. Hall, and D. A. Yonkers. Attenuation of postischemic cerebral hypo-perfusion by the 21-aminosteroid U74006F. Stroke 19, 340–344 (1988).PubMedGoogle Scholar
  55. 55.
    E. D. Hall, D. A. Yonkers, J. M. McCall, and J. M. Braughler. Effects of the 21-aminosteroid U74006F on experimental head injury in mice. J. Neurosurg. 68, 456–461 (1988).PubMedGoogle Scholar
  56. 56.
    B. Halliwell. Biochemical mechanisms accounting for the toxic action of oxygen on living organisms: The key role of superoxide dismutase. Cell Biol. Int. Rep. 2, 113–128 (1978a).Google Scholar
  57. 57.
    B. Halliwell. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. FEBS Lett. 96, 238–242 (1978b).Google Scholar
  58. 58.
    B. Halliwell. Superoxide-dependent formation of hydroxyl radicals in the presence of iron chelates. Is it a mechanism for hydroxyl radical production in biological systems? FEBS Lett. 92, 321–326 (1978c).Google Scholar
  59. 59.
    B. Halliwell. Invited Commentary. Superoxide, iron, vascular endothelium, and reperfusion injury. Free Rad. Res. Commun. 5, 315–318 (1989).Google Scholar
  60. 60.
    R. Hansson, B. Gustafsson, O. Jonsson, S. Lundstam, S. Pettersson, T. Schersten, and J. Waldenstrom. Effect of xanthine oxidase inhibition on renal circulation after ischemia. Transplantation Proc. 14, 51–58 (1982).Google Scholar
  61. 61.
    D. Harman. Aging: A theory based on free radical and radiation chemistry. Univ. Cal. Rad. Lab. Rep. No. 3078 (1955).Google Scholar
  62. 62.
    D. Harman. Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 11, 298–300 (1956).PubMedGoogle Scholar
  63. 63.
    W. K. Hass. Beyond cerebral blood flow, metabolism, and ischemic thresholds: Examination of the role of calcium in the initiation of cerebral infarction. In Cerebral Vascular Disease, vol. 3, Proceedings of the 10th Salzburg Conference on Cerebral Vascular Disease, J. S. Meyer, H. Lechner, M. Reivich, E. O. Ott, and A. Arabinar, eds., Excerpta Medica, Amsterdam, 1981, pp. 3–17.Google Scholar
  64. 64.
    H. M. Hassan. Biosynthesis and regulation of superoxide dismutases. Free Rad. Biol. Med. 5, 377–385.Google Scholar
  65. 65.
    D. J. Hearse, A. S. Manning, J. M. Downey, and D. M. Yellon. Xanthine oxidase: A critical mediator of myocardial injury during ischemia and reperfusion? Acta Physiol. Scand. Suppl. 548, 65–78 (1986).PubMedGoogle Scholar
  66. 66.
    L. Hillered and L. Ernster. Respiratory activity of isolated rat brain mitochondria following in vitro exposure to oxygen radicals. J. Cereb. Blood Flow Metabol. 3, 207–214 (1983).Google Scholar
  67. 67.
    D. Jamieson, B. Chance, E. Cadenas, and A. Boveris. The relation of free radical production to hyperoxia. Ann. Rev. Physiol. 48, 703–719 (1986).Google Scholar
  68. 68.
    E. D. Jarasch, G. Bruder, and H. W. Heid. Significance of xanthine oxidase in capillary endothelial cells. Acta Physiol. Scand. Suppl. 548, 39–46 (1986).PubMedGoogle Scholar
  69. 69.
    S. L. Jewett, L. J. Eddy, and P. Hochstein. Is the autoxidation of catecholamines involved in ischemia-reperfusion injury? Free Rad. Biol. Med. 6, 185–188.Google Scholar
  70. 70.
    J. R. Kanofsky, J. Wright, G. E. Miles-Richardson, and A. I. Tauber. Biochemical requirements for singlet oxygen production by purified human myeloperoxidase. J. Clin. Invest. 74, 1489–1495 (1984).PubMedGoogle Scholar
  71. 71.
    H. Kohler, and H. Jenzer. Interaction of lactoperoxidase with hydrogen peroxide. Formation of enzyme intermediates and generation of free radicals. J. Free Rad. Biol. Med. 6, 323–339 (1989).Google Scholar
  72. 72.
    Y. Kono, and I. Fridovich. Superoxide radical inhibits catalase. J. Biol. Chem. 257, 5751–5754 (1982).PubMedGoogle Scholar
  73. 73.
    Y. Kono, and I. Fridovich. Isolation and characterization of the pseudocatalase of lactobacillus plantarum. J. Biol. Chem. 258, 6015–6019 (1983).PubMedGoogle Scholar
  74. 74.
    H. A. Kontos. Oxygen radicals in cerebral vascular injury. Circ. Res. 57, 508–516 (1985).PubMedGoogle Scholar
  75. 75.
    W. H. Koppenol, J. Butler, and J. W. van Leeuwen. The Haber-Weiss cycle. Photochem. Photobiol. 28, 655–660 (1978).Google Scholar
  76. 76.
    K. Ley and K.-E. Arfors. Changes in macromolecular permeability by intravascular generation of oxygen derived free radicals. Microvas. Res. 24, 25–33 (1982).Google Scholar
  77. 77.
    R. E. Lynch, and I. Fridovich. Effects of superoxide on the erythrocyte membrane. J. Biol. Chem. 253, 1838–1845 (1978).PubMedGoogle Scholar
  78. 78.
    S. L. Marklund. Distribution of CuZn superoxide dismutase and Mn superoxide dismutase in human tissues and extracellular fluids. Acta Physiol. Scand. Suppl. 492, 19–23 (1980).PubMedGoogle Scholar
  79. 79.
    S. L. Marklund. Human copper-containing superoxide dismutase of high mol wt. Proc. Natl. Acad. Sci. LISA 79, 7634–7638 (1982).Google Scholar
  80. 80.
    S. L. Marklund. Extracellular superoxide dismutase and other superoxide dismutase isoenzymes in tissues from nine mammalian species. Biochem. J. 222, 649–655 (1984).PubMedGoogle Scholar
  81. 81.
    S. L. Marklund. Extracellular superoxide dismutase in human tissues and human cell lines. J. Clin. Invest. 74, 1398–1403 (1984).PubMedGoogle Scholar
  82. 82.
    S. L. Marklund, N. G. Westman, E. Lundgren, and G. Roos. Copper-and zinc-containing superoxide dismutase, manganese-containing superoxide dismutase, catalase, and glutathione peroxidase in normal and neoplastic human cell lines and normal human tissues. Cancer Res. 42, 1955–1961 (1982).PubMedGoogle Scholar
  83. 83.
    F. Marlhens, A. Nicole, and P. M. Sinet. Lowered levels of translatable messenger RNAs for manganese superoxide dismutase in human fibroblasts transformed by SV40. Biochem. Biophys. Res. Commun. 129, 300305 (1985).Google Scholar
  84. 84.
    A. Masuda, D. L. Long, Y. Kobayashi, E. Appella, J. J. Oppenheim, and K. Matsushima. Induction of mitochondrial manganese superoxide dismutase by interleukin 1. FASEB J. 2, 3087–3091 (1988).PubMedGoogle Scholar
  85. 85.
    J. M. McCord. Free radicals and inflammation: Protection of synovial fluid by superoxide dismutase. Science 185, 529–531 (1974).PubMedGoogle Scholar
  86. 86.
    J. M. McCord. Oxygen-derived free radicals in postischemic tissue injury. N. Engl. J. Med. 312, 159–163 (1985).PubMedGoogle Scholar
  87. 87.
    J. M. McCord. Free radicals and myocardial ischemia: Overview and outlook. J. Free Rad. Biol. Med. 4, 9–14 (1988).Google Scholar
  88. 88.
    J. M. McCord and E. D. Day. Superoxide-dependent production of hydroxyl radical catalyzed by iron-EDTA complex. FEBS Lett. 86, 139–142 (1978).PubMedGoogle Scholar
  89. 89.
    J. M. McCord and I. Fridovich. Superoxide dismutase: An enzymatic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049–6055 (1969).PubMedGoogle Scholar
  90. 90.
    J. M. McCord, K. Wong, S. H. Stokes, W. F. Petrone, and D. English. Superoxide and inflammation: A mechanism for the antiinflammatory activity of superoxide dismutase. Acta Physiol. Scand. Suppl. 492, 25–30 (1980).PubMedGoogle Scholar
  91. 91.
    E. Metchnikoff. Immunity in infective diseases. Johnson Reprint Corp., New York and London, 1905.Google Scholar
  92. 92.
    J. Miguel and J. E. Fleming. A two-step hypothesis on the mechanism of in vitro cell aging: Cell differentiation followed by intrinsic mitochondrial mutagenesis. Exp. Gerontol. 19, 31–36 (1984).Google Scholar
  93. 93.
    H. P. Misra, and I. Fridovich. The generation of superoxide radical during the autoxidation of ferredoxin. J. Biol. Chem. 240, 6886–6890 (1971).Google Scholar
  94. 94.
    H. Nohl. Oxygen radical release in mitochondria: Influence of age. In Free Radicals, Aging and Degenerative Diseases, J. E. Johnson, Jr., R. Walford, D. Harman, and J. Miguel, eds., Alan R. Liss, New York, 1986, pp. 77–97.Google Scholar
  95. 95.
    H. Nohl and D. Hegner. Do mitochondria produce oxygen radicals in vitro? Eur. J. Biochem. 82, 563–567 (1978).PubMedGoogle Scholar
  96. 96.
    H. Nohl, D. Hegner, and K. H. Summer. The mechanism of toxic action of hyperbaric oxygenation on the mitochondria of rat heart cells. Biochem. Pharmacol. 30, 1753–1757 (1981).PubMedGoogle Scholar
  97. 97.
    L. W. Oberley, M. L. McCormick, E. Sierra-Rivera, and D. Kasemset-St. Clair. Manganese superoxide dismutase in normal and transformed human embryonic lung fibroblasts. J. Free Rad. Biol. Med. 6, 379–384.Google Scholar
  98. 98.
    L. W. Oberley, T. D. Oberley, and G. R. Buettner. Cell division in normal and transformed cells: The possible role of superoxide and hydrogen peroxide. Med. Hypotheses 7, 21–42 (1981).PubMedGoogle Scholar
  99. 99.
    D. A. Parks, and D. N. Granger. Xanthine oxidase: Biochemistry, distribution and physiology. Acta Physiol. Scand. Suppl. 548, 87–99 (1986).PubMedGoogle Scholar
  100. 100.
    M. S. Patole, A. Swaroop, and T. Ramasarma. Generation of H2O2 in brain mitochondria. J. Neurochem. 47, 1–8 (1986).PubMedGoogle Scholar
  101. 101.
    H. D. Perez, and I. M. Goldstein. Generation of a chemotactic lipid from arachidonic acid by exposure to a superoxide-generating system. Fed. Proc. 38, 1170 (1979).Google Scholar
  102. 102.
    H. D. Perez, B. B. Weksler, and I. M. Goldstein. Generation of a chemotactic lipid from arachidonic acid by exposure to a superoxide-generating system. Inflammation 4, 313–328 (1980).PubMedGoogle Scholar
  103. 103.
    W. A. Pryor. The role of free radical reactions in biological systems. In Free Radicals in Biology, vol. 1, W. Pryor, ed., Academic, New York, 1976, pp. 149.Google Scholar
  104. 104.
    M. Rister, and R. L. Baehner. The alteration of superoxide dismutase, catalase, glutathione peroxidase and NAD(P)H cytochrome-c reductase in guinea pig polymorphonuclear leukocytes and alveolar macrophages during hypoxia. J. Clin. Invest. 58, 1174–1184 (1976).PubMedGoogle Scholar
  105. 105.
    R. K. Root and J. A. Metcalf. H2O2 release from human granulocytes during phagocytosis. Relationship to superoxide anion formation and cellular catabolism of H2O2: Studies with normal and cytochalasin B-treated cells. J. Clin. Invest. 60, 1266–1279 (1977).PubMedGoogle Scholar
  106. 106.
    H. Rosen, and S. J. Klebanoff. Bactericidal activity of a superoxide anion generating system. A model for the polymorphonuclear leukocyte. J. Exp. Med. 149, 27–39 (1979).PubMedGoogle Scholar
  107. 107.
    D. Rowley, J. M. C. Gutteridge, D. Blake, M. Farr, and B. Halliwell. Lipid peroxidation in rheumatoid arthritis: Thiobarbituric acid reactive material and catalytic iron salts in synovial fluid from rheumatoid arthritis patients. Clin. Sci. 66, 691–695 (1984).PubMedGoogle Scholar
  108. 108.
    D. C. Salo, S. W. Lin, R. E. Pacifici, and K. J. A. Davies. Superoxide dismutase is preferentially degraded by a proteolytic system from red blood cells following oxidative modification by hydrogen peroxide. J. Free Rad. Biol. Med. 5, 335–339 (1988).Google Scholar
  109. 109.
    A. Sammuni, M. Chevion, and G. Czapski. Unusual copper-induced sensitization of the biological damage due to superoxide radicals. J. Biol. Chem. 256, 12632–12635 (1981).Google Scholar
  110. 110.
    O. D. Saugstad, and A. O. Aasen. Plasma hypoxanthine concentrations in pigs—A prognostic aid in hypoxia. Eur. Surg. Res. 12, 123–129 (1980).PubMedGoogle Scholar
  111. 111.
    G. W. Schmid-Schonbein. Capillary plugging by granulocytes and the noreflow phenomenon in the microcirculation. Fed. Proc. 46, 2397–2401.Google Scholar
  112. 112.
    G. W. Schmid-Schoenbien, and R. L. Engler. Leukocyte capillary plugging in myocardial ischemia and during reperfusion in the dog. Am. J. Pathol.: 98–111 (1983).Google Scholar
  113. 113.
    J. A. Scott, A. J. Fischman, J. Homey, J. T. Fallon, B. A. Khan, C. A. Peto, and C. A. Rabito. Morphologic and functional correlates of plasma membrane injury during oxidant exposure. J. Free Rad. Biol. Med. 6, 361–367 (1989).Google Scholar
  114. 114.
    M. Shlafer, C. L. Myers, and S. Adkins. Mitochondrial hydrogen peroxide generation and activities of glutathione peroxidase and superoxide dis-mutase following global ischemia. J. Mol. Cell Cardiol. 19, 1195–1206 (1987).PubMedGoogle Scholar
  115. 115.
    H. C. Sutton, and C. C. Winterbourn. On the participation of higher oxidation states of iron and copper in Fenton reactions. J. Free Rad. Biol. Med. 6, 53–60 (1989).Google Scholar
  116. 116.
    J. Travis, and G. S. Salvesen. Human plasma proteinase inhibitors. Ann. Rev. Biochem. 52, 655–709 (1983).PubMedGoogle Scholar
  117. 117.
    P. O. P. Ts’o, W. J. Caspary, and R. J. Lorentzen. The involvement of free radicals in chemical carcinogenesis. In Free Radicals in Biology, vol. 3, W. Pryor, ed., Academic, New York, 1977, pp. 251–303.Google Scholar
  118. 118.
    J. F. Turrens, B. A. Freeman, and J. D. Crapo. Hyperoxia increases H2O2 release by lung mitochondria and microsomes. Arch. Biochem. Biophys. 217, 411–421 (1982)PubMedGoogle Scholar
  119. 119.
    J. F. Turrens, B. A. Freeman, J. G. Levitt, and J. D. Crapo. The effect of hyperoxia on superoxide production by lung submitochondrial particles. Arch. Biochem. Biophys. 217, 401–410 (1982).PubMedGoogle Scholar
  120. 120.
    F. Ursini, M. Maiorino, M. Valente, L. Ferri, and C. Gregolin. Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochem. Biophys. Acta 710, 197211 (1982).Google Scholar
  121. 121.
    D. G. Vollmer, N. F. Kassell, K. Hongo, H. Ogawa, and T. Tsukahara. Effect of the nonglcocorticoid 21-aminosteroid U74006F on experimental cerebral vasospasm. Surg. Neurol. 31, 190–194 (1989).PubMedGoogle Scholar
  122. 122.
    S. J. Weiss. Oxygen, ischemia and inflammation. Acta Physiol. Scand. Suppl. 548, 9–37 (1986).PubMedGoogle Scholar
  123. 123.
    S. J. Weiss, R. Klein, A. Slivka, and M. Wei. Chlorination of taurine by human neutrophils: Evidence for hypochlorous acid generation. J. Clin. Invest. 70, 598–607 (1982).PubMedGoogle Scholar
  124. 124.
    S. J. Weiss, M. B. Lampert, S. T. Test. Long-lived oxidants generated by human neutrophils characterization and bioactivity. Science 222, 625–628 (1983).PubMedGoogle Scholar
  125. 125.
    S. J. Weiss, J. Young, A. F. LoBuglio, A. Slivka, and N. F. Nimek. Role of hydrogen peroxide in neutrophil-mediated destruction of cultured endothelial cells. J. Clin. Invest. 68, 714–721 (1981).PubMedGoogle Scholar
  126. 126.
    S. W. Werns, and B. R. Lucchesi. Leukocytes, oxygen radicals and myocardial injury due to ischemia and reperfusion. Free Rad. Biol. Med. 4, 31–37 (1987).Google Scholar
  127. 127.
    C. C. Winterbourn. Hydroxyl radical production in body fluids. Roles of metal ions, ascorbate and superoxide. Biochem. J. 198, 125–131 (1981).PubMedGoogle Scholar
  128. 128.
    L. A. Witting. Vitamin E and lipid antioxidants in free radical initiated reactions. In Free Radicals in Biology, W. Pryor, ed., Academic, New York, 1982, pp. 295–319.Google Scholar
  129. 129.
    G. H. W. Wong, and D. V. Goeddel. Induction of manganese superoxide dismutase by tumour necrosis factor: Possible protective mechanism. Science 242, 941–944 (1988).PubMedGoogle Scholar
  130. 130.
    S. Yamashogi and G. Kajimoto. Antioxidant effect of ceruloplasmin on microsomal lipid peroxidation. FEBS Lett. 152, 168 (1983).Google Scholar
  131. 131.
    M. Zuccarello, and D. K. Anderson. Protective effect of a 21-aminosteroid on the blood-brain barrier following subarachnoid hemorrhage in rats. Stroke 20, 367–371 (1989).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Rolando Del Maestro

There are no affiliations available

Personalised recommendations