Comparison of Human Versus Rodent Cell Transformation: Importance of Cell Aging

  • J. Carl Barrett
Part of the Experimental Biology and Medicine book series (EBAM, volume 25)


Rodent models are used for the identification of carcinogenic agents and for studies of mechanisms of carcinogenesis. An underlying assumption is that the information gained from animal studies will extend to humans. However, a fundamental difference must exist between human and rodents in terms of neoplastic development because cancers generally arise in rodents after a few years whereas the same cancers require decades in humans. For example, the spontaneous incidence of tumors in rodents after two years is approximately equal to that in humans at 70 years (1). It is an important problem in cancer biology to understand this fundamental difference between rodents and humans. One approach to this problem is to elucidate the underlying mechanisms of neoplastic transformation of cells in culture from different species by determining the number and type of genetic events involved. Cellular and molecular studies offer the opportunity to examine species differences and similarities.


Human Chromosome Cellular Senescence Population Doubling Hybrid Clone Werner Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. G. Cutler and I. Semsei. J. Gerontol. 44, 25 (1989).PubMedCrossRefGoogle Scholar
  2. 2.
    J. C. Barrett and W. F. Fletcher. In: J. C. Barrett (ed.), Mechanisms of Environmental Carcinognesis: Multistep Models of Carcinogenesis, 73–116, CRC Press, Boca Raton, Florida (1987).Google Scholar
  3. 3.
    J. J. McCormick and V. M. Maher. Mutat. Res. 199, 273 (1988).PubMedCrossRefGoogle Scholar
  4. 4.
    R. A. Weinberg. Science 230, 770 (1985).PubMedCrossRefGoogle Scholar
  5. 5.
    J. S. Rhim, G. Jay, et al. Science 227, 1250 (1985).PubMedCrossRefGoogle Scholar
  6. 6.
    E. R. Fearon and B. Vogelstein. Cell 61, 759 (1990).PubMedCrossRefGoogle Scholar
  7. 7.
    R. A. Weinberg. Cancer Res. 49, 3713 (1989).PubMedGoogle Scholar
  8. 8.
    J. A. Boyd and J. C. Barrett. Pharmacol. Ther. 46, 469 (1990).PubMedCrossRefGoogle Scholar
  9. 9.
    L. Hayflick. New Engl. J. Med. 295, 1302 (1976).PubMedCrossRefGoogle Scholar
  10. 10.
    V. J. Cristofalo and D. G. Ragona. In: R. C. Adelman and G. S. Roth (eds.), Testing the Theories of Aging, 201–219, CRC Press, Boca Raton, Florida (1987).Google Scholar
  11. 11.
    S. Goldstein. Exp. Cell Res. 83, 297 (1974).CrossRefGoogle Scholar
  12. 12.
    S. Goldstein, S. Murano and R. J. S. Reis. J. Gerontol. 45, B3 (1990).PubMedCrossRefGoogle Scholar
  13. 13.
    R. Sager. Cancer Res. 46, 1573 (1986).PubMedGoogle Scholar
  14. 14.
    V.T. DeVita Jr. J. Natl. Cancer Inst. 82, 1522 (1990).PubMedCrossRefGoogle Scholar
  15. 15.
    C. Paraskeva, S. Finerty and S. Powell. Int. J. Cancer 41, 908 (1988).PubMedCrossRefGoogle Scholar
  16. 16.
    C. Paraskeva, S. Finerty, et al. Cancer Res. 49, 1282 (1989).PubMedGoogle Scholar
  17. 17.
    C. Paraskeva, S. Finerty and S. Powell. Int. J. Cancer 43, 743 (1989).PubMedCrossRefGoogle Scholar
  18. 18.
    A. Macieira-Coelho. In: H. P. von Hang (ed.), Interdisciplinary Topics in Gerontology, Vol. 23, Karger, Basel (1988).Google Scholar
  19. 19.
    O. M. Pereira-Smith and J. R. Smith. Proc. Natl. Acad. Sci. USA 85, 6043 (1988).CrossRefGoogle Scholar
  20. 20.
    O. Sugawara, M. Oshimura, et al. Science 247, 707 (1990).PubMedCrossRefGoogle Scholar
  21. 21.
    M. Koi and J. C. Barrett. Proc. Natl. Acad. Sci. USA 83, 5992 (1986).PubMedCrossRefGoogle Scholar
  22. 22.
    C. B. Klein, K. Conway, et al. Science 251, 796 (1991).PubMedCrossRefGoogle Scholar
  23. 23.
    Y. Ning, J. L. Weber, et al. Proc. Natl. Acad. Sci. USA, in press.Google Scholar
  24. 24.
    M. Koi, H. Morita, et al. Molec. Carcinogen. 2, 12 (1989).CrossRefGoogle Scholar
  25. 25.
    D. J. Fitzgerald, H. Kitamura, et al. Cancer Res. 46, 4642 (1986).PubMedGoogle Scholar
  26. 26.
    J. C. Barrett, M. Oshimura, et al. In: V. Dellarco, P. E. Voytek and A. Hollaender (eds.), Aneuploidy: Etiology and Mechanisms, 523–538, Plenum Press, New York (1985).CrossRefGoogle Scholar
  27. 27.
    T. Tsutsui, N. Suzuki, et al. Mutat. Res. 240, 241 (1990).PubMedCrossRefGoogle Scholar
  28. 28.
    H. Yamada, N. Wake, et al. Oncogene 5, 1141 (1990).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • J. Carl Barrett
    • 1
  1. 1.National Institute of Environmental Health SciencesResearch Triangle ParkUSA

Personalised recommendations