Skip to main content

Local Metabolic Influences on Resistance Vessels

  • Chapter

Part of the book series: Vascular Biomedicine ((VB))

Abstract

In many important organs such as the brain, heart, and skeletal muscle, it is clear that the control of resistance-vessel tone is dominated by local metabolic mechanisms that automatically adjust organ blood flow to match changing metabolic needs of the tissue. This chapter will highlight results from microcirculatory approaches to identifying the mechanisms important in local vascular control. Also considered are the interactions that must exist in vivo between local metabolic mechanisms and the other known influences on resistance vessels, described in other chapters of this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gaskell, W. H. (1877) J. Anat. 11, 360–402.

    CAS  Google Scholar 

  2. Sparks, H. V. Jr. and Belloni, F. L. (1978) Annu. Rev. Physiol. 40, 67–92.

    Article  PubMed  CAS  Google Scholar 

  3. Sparks, H. V. Jr. (1980) Handbook of Physiology. Section 2: The Cardiovascular System, vol. 2: Vascular Smooth Muscle. American Physiological Society, Bethesda, MD, pp. 475–513.

    Google Scholar 

  4. Bassenge, E. and Munzel, T. (1988) Am. J. Cardiol. 62, 40E–44E.

    Article  PubMed  CAS  Google Scholar 

  5. Mohrman, D. E. and Regal, R. R. (1988) Am. J. Physiol. 255, H1004–H1010.

    CAS  Google Scholar 

  6. Marshall, J. M. and Tandon, H. C. (1984) J. Physiol. (Lond.) 350, 447–459.

    CAS  Google Scholar 

  7. Mohrman, D. E. and Heller, L. J. (1984) Am. J. Physiol. 246, H592–H600.

    PubMed  CAS  Google Scholar 

  8. Gorczynski, R. J., Klitzman, B., and Duling, B. R. (1978) Am. J. Physiol. 235, H494–H5O4.

    PubMed  CAS  Google Scholar 

  9. Lash, J. M. and Bohlen, H. G. (1987) Am. J. Physiol. 252, H1192–H1202.

    PubMed  CAS  Google Scholar 

  10. Blomberg, J., Maspers, M., and Mellander, S. (1989) Acta Physiol. Scand. 135, 83–94.

    Article  Google Scholar 

  11. Kanatsuka, H., Lamping, K. G., Eastham, C. L., Dellsperger, K. C., and Marcus, M. L. (1989) Circ. Res. 65,1296–1305.

    Article  PubMed  CAS  Google Scholar 

  12. Kontos, H. A., Wei, E. P., Raper, A. J., Rosenblum, W. I., Navari, R. M., and Paterson, J. L. Jr. (1978) Am. J. Physiol. 234, H582–H591.

    PubMed  CAS  Google Scholar 

  13. Bohlen, H. G. (1980) Am. J. Physiol. 238, H164–H171.

    PubMed  CAS  Google Scholar 

  14. Lindbom, L. (1986) Microvasc. Res. 31,143–156.

    Article  PubMed  CAS  Google Scholar 

  15. Mohrman, D. E. and Heller., L. J. (1988) Physiologist 31, A26.

    Google Scholar 

  16. Rubin, M. J. and Bohlen, H. G. (1985) Am. J. Physiol. 249, H540–H546.

    PubMed  CAS  Google Scholar 

  17. Lombard, J. H. and Stekiel, W. J. (1985) Microvasc. Res. 30, 346–349.

    Article  PubMed  CAS  Google Scholar 

  18. Duling, B. R. (1972) Circ. Res. 31, 481–489.

    Article  PubMed  CAS  Google Scholar 

  19. Prewitt, R. L. and Johnson, P. C. (1976) Microvasc. Res. 12, 59–70.

    Article  PubMed  CAS  Google Scholar 

  20. Sullivan, S. M. and Johnson, P. C. (1981) Am. J. Physiol. 241, H547–H556.

    PubMed  CAS  Google Scholar 

  21. Jackson, W. F. and Duling, B. R. (1983) Circ. Res. 53, 515–525.

    Article  PubMed  CAS  Google Scholar 

  22. Jackson, W. F. (1987)Am. J. Physiol. 253, H1120–H1126.

    PubMed  CAS  Google Scholar 

  23. Boegehold, M. A. and Bohlen, H. G. (1988) Hypertension 12,184–191.

    Article  PubMed  CAS  Google Scholar 

  24. Duling, B. R. (1974) Am. J. Physiol. 227, 42–49.

    PubMed  CAS  Google Scholar 

  25. Duling, B. R. and Berne, R. M. (1970) Circ. Res. 23, 669–678.

    Article  Google Scholar 

  26. Ivanov, K. P., Derry, A. N., Vovenko, E. P., Samoilov, M. O., and Semionov, D. G. (1982) Pl fuger’s Arch. 393,118–120.

    CAS  Google Scholar 

  27. Roth, A. C. and Wade, K. (1986) Microvasc. Res. 32, 64–83.

    Article  PubMed  CAS  Google Scholar 

  28. Gorczynski, R. J. and Duling, B. R. (1978) Am. J. Physiol. 235, H5O5–H515.

    Google Scholar 

  29. Proctor, K. G. and Bohlen, H. G. (1981) Blood Vessels 18, 58–66.

    PubMed  CAS  Google Scholar 

  30. Klitzman, B., Damon, D., Gorczynski, R. J., and Duling, B. R. (1982) Circ. Res. 52, 711–721.

    Article  Google Scholar 

  31. Pittman, R. N. (1986) Can. J. Cardiol. 2,124–131.

    CAS  Google Scholar 

  32. Jackson, W. F. (1989) Am. J. Physiol. 257, H1565–H1572.

    PubMed  CAS  Google Scholar 

  33. Pohl, U. and Busse, R. (1989) Am. J. Physiol. 256, H1595–H1600.

    PubMed  CAS  Google Scholar 

  34. Berne, R. M., Winn, H. R., Knabb, R. M., Ely, S. W., and Rubio, R. (1983) Regulatory Function of Adenosine (Berne, R. M., Rall, T. W., and Rubio, R., eds.) Nijhoff, The Hague, pp. 293–317.

    Google Scholar 

  35. Proctor, K. G. and Duling, B. R. (1982) Am. J. Physiol. 242, H688–H697.

    PubMed  CAS  Google Scholar 

  36. Proctor, K. G. (1984) Am. J. Physiol. 247, H195–H205.

    PubMed  CAS  Google Scholar 

  37. Morff, R. J. and Granger, H. J. (1983) Am. J. Physiol. 244, H567–H576.

    PubMed  CAS  Google Scholar 

  38. Wei, E. P. and Kontos, H. A. (1981)1. Cereb. Blood Flow Metab. l(Suppl. 1), S395–S396.

    Google Scholar 

  39. Winn, H. R., Welsh, J. E., Rubio, R., and Berne, R. M. (1981) J. Cereb. Blood Flow Metab. 1, 239–244.

    Article  PubMed  CAS  Google Scholar 

  40. Morii, S., Ngai, A. C., Ko, K. R., and Winn, H. R. (1987) Am. J. Physiol. 253, H165–H175.

    PubMed  CAS  Google Scholar 

  41. Kontos, H. A. and Wei, E. P. (1985) Ann. Biomed. Eng. 13, 329–334.

    Article  PubMed  CAS  Google Scholar 

  42. Ibayashi, S., Ngai, A. C., Meno, J. R., and Winn, H. R. (1988) J. Cereb. Blood Flow Metab. 8, 829–833.

    Article  PubMed  CAS  Google Scholar 

  43. Dora, E., Koller, A., and Kovach, A. G. (1984)1. Cereb. Blood Flow Metab. 4,447–457.

    Article  PubMed  CAS  Google Scholar 

  44. Dora, E. (1986) Acta Physiol. Hung. 68,183–197.

    PubMed  CAS  Google Scholar 

  45. Strandgaard, S. and Paulson, O. B. (1984) Stroke 15,413–416.

    Article  PubMed  CAS  Google Scholar 

  46. Heistad, D. D. and Kontos, H. A. (1983) Handbook of Physiology, Section 2: The Cardiovascular System, vol. 3: Peripheral Circulation and Organ Blood Flow. American Physiological Society, Bethesda, MD, pp. 137–182.

    Google Scholar 

  47. Kontos, H. A., Raper, A. J., and Patterson, J. L. Jr. (1977) Stroke 8,358–360.

    Article  PubMed  CAS  Google Scholar 

  48. Harder, D. R. (1982) Pflugers Arch. 394,182–185.

    Article  PubMed  CAS  Google Scholar 

  49. Harder, D. R. and Madden, J. A. (1985) Pflugers Arch. 405,402–404.

    Article  Google Scholar 

  50. Pittman, R. N. and Duling, B. R. (1977) Microvasc. Res. 13,211–224.

    Article  PubMed  CAS  Google Scholar 

  51. Wagerle, L. C. and Mishra, O. P. (1988) Circ. Res. 62,1019–1026.

    Article  PubMed  CAS  Google Scholar 

  52. Case, R. B., Felix, A., Wachter, M., Kyriakidis, G., and Castellana, F. (1978) Circ. Res. 42, 410–418.

    Article  PubMed  CAS  Google Scholar 

  53. Eriksson, E. and Lisander, B. (1972) Acta Physiol. Scand. 84,295–305.

    Article  PubMed  CAS  Google Scholar 

  54. Marshall, J. M. (1982) J. Physiol. (Lond.), 332,169–186.

    CAS  Google Scholar 

  55. Boegehold, M. A. and Johnson, P. C. (1988) Am. J. Physiol. 254, H919–H928.

    PubMed  CAS  Google Scholar 

  56. Boegehold, M. A. and Johnson, P.C. (1988) Am. J. Physiol. 254, H929–H936.

    PubMed  CAS  Google Scholar 

  57. Thompson, L. P. and Mohrman, D. E. (1983) Am. J. Physiol. 245, H66–H71.

    CAS  Google Scholar 

  58. Johnson, P.C. (1980) Handbook of Physiology. Section 2: The Cardiovascular System, vol. 2: Vascular Smooth Muscle. American Physiological Society, Bethesda, MD, pp. 409–422.

    Google Scholar 

  59. Wei, E. P. and Kontos, H. A. (1984) Circ. Res. 55,249–252.

    Article  PubMed  CAS  Google Scholar 

  60. Meininger, G. A., Mack, C. A., Fehr K. L., and Bolin, H. G. (1987) Circ. Res. 60,861–870.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mohrman, D.E. (1991). Local Metabolic Influences on Resistance Vessels. In: Bevan, J.A., Halpern, W., Mulvany, M.J. (eds) The Resistance Vasculature. Vascular Biomedicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0403-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0403-9_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6746-1

  • Online ISBN: 978-1-4612-0403-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics