Heat Flows and Relaxed Energies for Harmonic Maps

  • Fabrice Bethuel
  • Jean-Michel Coron
  • Jean-Michel Ghidaglia
  • Alain Soyeur
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 7)


In this paper we construct weak solutions for the heat flow associated with relaxed energies for harmonic maps between B3 and S2. Nonuniqueness results for such solutions are also given.


Heat Flow Weak Solution Weak Topology Relaxed Energy Nonlinear Parabolic Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. Bethuel, H. Brezis, J.M. Coron, Relaxed energies for harmonic maps, Variational Problems, Paris June 1988, H. Berestycki, J.M. Coron, I. Ekeland Eds, Birkhäuser.Google Scholar
  2. [2]
    F. Bethuel, X. Zheng, Density of smooth functions between two manifolds in Sobolev spaces, J. Func. Anal. 80(1988), 60–75.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    H. Brezis, J.M. Coron, E.H. Lieb, Harmonic maps with defects, Comm. Math. Phys. 107 (1986), 649–705.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Y. Chen, Weak solutions to the evolution problem of harmonic maps, Math. Z. 201 (1989), 69–74.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Y. Chen and W.Y. Ding, Blow-up and global existence for heat flows for harmonic maps, Inventiones Math. 99 (1990), 567–578.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    Y. Chen and M. Struwe, Existence and partial regularity result for the heat flow for harmonic maps, Math. Z. 201 (1989), 83–103.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    J.M. Coron, Nonuniqueness for the heat flow of harmonic maps, Annales IHP, Analyse Non Linéaire, to appear.Google Scholar
  8. [8]
    J.M. Coron and J.M. Ghidaglia, Explosion en temps fini pour le flot des applications harmoniques, CR. Acad. Sci. Paris 308 (1989), 339–344.MathSciNetMATHGoogle Scholar
  9. [9]
    W.Y. Ding, Blow-up of solutions of heat flows for harmonic maps, preprint.Google Scholar
  10. [10]
    J. Eells and J.H. Sampson, Harmonie mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    M. Giaquinta, G. Modica, J. Soucek, Cartesian currents and variational problems for mappings into spheres, preprints, 1989.Google Scholar
  12. [12]
    M. Giaquinta, G. Modica, J. Soucek, The Dirichlet energy of mappings with values into the sphere, preprint, 1989.Google Scholar
  13. [13]
    K. Horihata and N. Kikuchi, A construction of solutions satisfying a Caccioppoli inequality for nonlinear parabolic equations associated to a variational functional of harmonic type, preprint.Google Scholar
  14. [14]
    J. Keller, J. Rubinstein, P. Sternberg, Reaction-diffusion processes and evolution to harmonic maps, preprint.Google Scholar
  15. [15]
    J. Shatah, Weak solutions and development of singularities of the SU(2) σ-model, Comm. Pure Appl. Math. 41 (1988), 459–469.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    L. Simon, Lectures on geometric measure theory, Proc. of the Centre for Mathematical Analysis, Australian National University 3 (1983).Google Scholar
  17. [17]
    M. Struwe, On the evolution of harmonic maps of Riemannian surfaces, Comment. Math. Helv. 60 (1985), 558–581.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    M. Struwe, On the evolution of harmonic maps in higher dimensions, J. Diff. Geom. 28 (1988), 485–502.MathSciNetMATHGoogle Scholar
  19. [19]
    M. Struwe, The evolution of harmonic maps: existence, partial regularity and singularities, this volume.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Fabrice Bethuel
    • 1
  • Jean-Michel Coron
    • 2
  • Jean-Michel Ghidaglia
    • 3
  • Alain Soyeur
    • 3
  1. 1.Lab. de Mathématiques et ModélisationCERMA-ENPC, La CourtineNoisy le Grand CedexFrance
  2. 2.Lab. de Mathématiques et ModélisationCMLA-ENSCachan CedexFrance
  3. 3.Lab. d’Analyse NumériqueCNRS et Univ. Paris-SudOrsay CedexFrance

Personalised recommendations