The Quenching Problem on the N-dimensional Ball

  • Marek Fila
  • Josephus Hulshof
  • Pavol Quittner
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 7)


Consider the problem where β > 0 and Ω = B R (0) ≔ x ∈ IR N ; |x| < R. It is known ([AW]) that there is a positive number R o = R o (N,β) such that u exists globally if R < R o while for R> R o the solution u reaches zero in a finite time T (it quenches). The only point x o for which u(x o , t) → 0 as t 2192 T is x o = 0 (see [AK]).


Maximum Principle Finite Time Singular Solution Positive Equilibrium Infinite Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AK]
    A. Acker & B. Kawohl, Remarks on quenching, Nonlinear Anal. TMA 13 (1989), 53–61.MathSciNetMATHCrossRefGoogle Scholar
  2. [AW]
    A. Acker & W. Walter, The quenching problem for nonlinear partial differential equations, Springer Lecture Notes in Math. 564 (1976),1–12.MathSciNetCrossRefGoogle Scholar
  3. [A1]
    H. Amann, On the existence of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. J. 21 (1971), 125–146.MathSciNetCrossRefGoogle Scholar
  4. [A2]
    H. Amann, Supersolutions, monotone iterations, and stability, J. Diff. Equ. 21 (1976), 363–377.MathSciNetMATHCrossRefGoogle Scholar
  5. [BPT]
    H. Brézis, L.A. Peletier & D. Terman, A very singular solution of the heat equation with absorption, Arch. Rat. Mech. Anal. 95 (1986), 185–209.MATHCrossRefGoogle Scholar
  6. [BV]
    W. J. van den Broek & F. Verhulst, A generalized Emden-Fowler equation, Math. Meth. Appl. Sc. 4 (1982), 259–271.MATHCrossRefGoogle Scholar
  7. [FH]
    M. Fila & J. Hulshof, A note on the quenching rate, to appear in Proc. A. M. S.Google Scholar
  8. [FK1]
    M. Fila & B. Kawohl, Asymptotic analysis of quenching problems, to appear in Rocky Mountain J. of Math.Google Scholar
  9. [FK2]
    M. Fila & B. Kawohl, Is quenching in infinite time possible?, Quarterly of Appl. Math. 48(1990), 531–534.MathSciNetMATHGoogle Scholar
  10. [GNN]
    B. Gidas, W.-M. Ni & L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209–243.MathSciNetMATHCrossRefGoogle Scholar
  11. [GK]
    Y. Giga & R.V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38 (1985), 297–319.MathSciNetMATHCrossRefGoogle Scholar
  12. [G]
    R.J. Grundy, Similarity solutions of the nonlinear diffusion equation, Quarterly Appl. Math. 37 (1979), 259–280.MathSciNetMATHGoogle Scholar
  13. [G1]
    J.S. Guo, On the quenching behavior of the solution of a semilinear parabolic equation, J. Math. Anal. Appl. 151(1990), 58–79.MathSciNetMATHCrossRefGoogle Scholar
  14. [G2]
    J.S. Guo, On the semilinear elliptic equation Δw−1/2y∇ww-w -03B2= 0 in IR n, IMA preprint #531 (1989).Google Scholar
  15. [H]
    J. Hulshof, Similarity solutions of the porous medium equation with sign changes, J. Math. Anal. Appl. 156 (1991).Google Scholar
  16. [J]
    C.W. Jones, On reducible nonlinear differential equations occurring in mechanics, Proc. Roy. Soc. A 217 (1953), 327–343.MATHCrossRefGoogle Scholar
  17. [JL]
    D.D. Joseph & T.S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rat. Mech. Anal. 49 (1973), 241–269.MathSciNetMATHGoogle Scholar
  18. [L1]
    H.A. Levine, The phenomenon of quenching: a survey, in: Trends in the Theory and Practice of Nonlinear Analysis, V. Lakshmikantham ed. North Holland (1985), 257–286.Google Scholar
  19. [L2]
    H.A. Levine, Quenching, nonquenching and beyond quenching for solutions of some parabolic equations, Ann. Mat. Pura Appl. 155 (1989), 243–260.MathSciNetMATHCrossRefGoogle Scholar
  20. [LM]
    H.A. Levine & J.T. Montgomery, The quenching of solutions of some nonlinear parabolic equations, SIAM J. Math. Anal. 11 (1980), 842–847.MathSciNetMATHCrossRefGoogle Scholar
  21. [S1]
    D.H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 21 (1972), 979–1000.MathSciNetMATHCrossRefGoogle Scholar
  22. [S2]
    D.H. Sattinger, Topics in Stability and Bifurcation Theory, Springer Lecture Notes (1973).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Marek Fila
    • 1
  • Josephus Hulshof
    • 2
  • Pavol Quittner
    • 3
  1. 1.Dept. of Math. AnalysisComenius Univ.BratislavaCzechoslovakia
  2. 2.Mathematical Inst.Leiden Univ.LeidenThe Netherlands
  3. 3.Inst. of Appl. Math.Comenius Univ.BratislavaCzechoslovakia

Personalised recommendations