Skip to main content

Low Density Facilities

  • Chapter
Advances in Hypersonics

Abstract

Space vehicles mowing through the high atmosphere are usually exposed to a hypersonic rarefied flow. In addition to the flow field rarefaction the high flight velocities impose severe problems on the flow field development and on the necessary simulation facilities. Vehicles, which strong influence of rarefaction effects on flight performance or on their design are

  • Satellites in low orbit

  • Aeroassisted orbit transfer vehicles (AOTV)

  • Reentry vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

A:

reference area

Cp :

pressure coefficient

D:

diameter

D:

drag

Ė:

energy flux

h:

specific enthalpy

hd :

specific enthalpy for dissociation

Kn:

Knudsen number

Kr :

rate constant for specific reaction

l:

body length

lchar :

characteristic flow field length

lr :

reaction length

L:

nozzle length

M:

molecular mass (kg/K mol)

Ma:

Mach number

m:

mass flow

n:

number density of molecules

p:

pressure

q:

dynamic pressure

q:

heat flux

Q:

heat flow

r:

recovery factor

r:

radius of curvature

Re:

Reynolds number

Rs :

similarity parameter for a chemical reaction

S:

molecular speed ratio

T:

temperature

V:

magnitude of celocity vector

v:

volume flow (equal suction speed S)

u,v,w,:

velocity components

x,y,z:

local rectangular coordinates

δ:

boundary layer thickness

ө:

nozzle half angle

κ:

ratio of specific heats

λ:

molecular mean free path

μ:

viscosity

v :

molecular collision frequency

c:

continuum

FM:

free molecular

i:

incident molecules

n:

mormal component to surface

r:

reflected molecules

s:

stagnation point on a body

t:

total conditions with isentropic compression

w:

wall

O:

stagnation chamber conditions

s:

stagnation point on a body

1:

test section conditions, free stream

2:

condition behind a normal shock wave

∞:

free stream

*:

distance from nozzle throat

References

  1. Kogan, M.N., Rarefied Gas Dynamics, New York: Plenum Press, 1969.

    Google Scholar 

  2. Vincenti, W.G., Kruger, H.C., Introduction to Physical Gas Dynamics. New York: John Wiley, 1967

    Google Scholar 

  3. Freeman, Nonequilibrium Flow of an Ideal Dissociating Gas. J. Fluid Mech., Vol.4, 1958, pp. 401–424.

    Article  Google Scholar 

  4. Harney, D.J., Chemical Kinetic Regimes of Hypersonic Flight Simulation. AEDS-TDR-63–3, 1963

    Google Scholar 

  5. Hornung, H., 28th Lanchester Memorial Lecture, Experimental Real- Gas Hypersonics., ZFW 12 (1988), pp 293–301

    Google Scholar 

  6. Daum, F.L., Gyarmathy, G., Condensation of Air and Nitrogen in Hypersonic Wind Tunnels. AIAA Journal, 1968, pp.458–465

    Google Scholar 

  7. Dankert, C., Koppenwaliner, G., Homogeneous Condensation in N2, Ar, and H2O Free Jets. J. Phys. Chemistry, 91, 1987 pp. 2482–2486.

    Article  Google Scholar 

  8. Vas, I., Koppenwaliner, G., The Princeton University High Pressure Hypersonic Nitrogen Tunnel N-3. Princeton University, Gas Dynamics Laboratory, Rep. 690, 1964

    Google Scholar 

  9. Harvey, J.K., Jeffery, R.W., Uppington, D.C., The Imperial College Graphite Heated Hypersonic Wind Tunnel. R & M, No. 3701, Ministry of Defence Aeronautical Research Council Reports and Memoranda, London, 1972

    Google Scholar 

  10. Wuest, W., Koppenwallner, G., Hefer, G., Legge, H., Der hypersonische Vakuumkanal der Aerodynamischen Versuchsanstalt Gottingen. Jahrbuch 1969 der DGLR, pp.38–52.

    Google Scholar 

  11. Allegre, J., Raffin, M., Obtention de nombres de Mach compris entre 15 et 30 dans une sufflerie a fonctionnement continu. L. Aeronautique et L’ Astronautique, No.37, 1972 pp. 67–79

    Google Scholar 

  12. Shreeve, R.P., Lord, W.T., Boersen, S.J., Bogdonoff, S.M., A Graphite Resistance Heater for a Hypersonic Wind Tunnel Using Nitrogen. Part I: Description of Tunnel and Heater. Part II: Analysis of Heater Performance. Int. J. Heat Mass Transfer, 5, 1962, pp. 1081–1103.

    Article  Google Scholar 

  13. Potter, J.L., Kinslow, M., Arney, G.D., Bailey, A.B., Description and Preliminary Calibration of a Low Density Hypervelocity Wind Tunnel. AEDC-TN 61–63, 1961.

    Google Scholar 

  14. Fiebig, M., Kindler, K., Papanikas, G., Hochleistungsbrenner und Expansionsdüsen zur Untersuchung von Hochenthalpiestro-mungen. DLR-Mitt. 75–06, 1975.

    Google Scholar 

  15. Maslach, G.J., Sherman, F.S., Design and Testing of an Axi-symmetric Nozzle for a Low Density Wind Tunnel, WADS-TR-56–34–341, University of California, Report 150–134, 1956.

    Google Scholar 

  16. Vas, I.E., Allegre, J., The N-4 Hypersonic Low Density Facility and Some Premilinary Results on a Sharp Flat Plate. Rarefied Gas Dynamics, Vol. II, 1967, pp. 1015–1030. Proc. 5th Int. Symposium. New York: Academic Press, 1967.

    Google Scholar 

  17. Hefer, G., Kienappel, K., Erprobung einer mit Stickstoff gekühlten Düse des Hypersonischen Vakuumwindkanals. DLR-FB 70–41, 1970.

    Google Scholar 

  18. Ashkenas, H., Sherman, F.S., The Structure and Ultilization of Supersonic Free Jets on Low-Density Wind Tunnels. Proceedings of the 4th Int. Symposium on Rarefied Gas Dynamics, Toronto, 1964 (ed. J.H. de Leeuw), Vol. II, pp. 84–105, New York: Academic Press, 1966.

    Google Scholar 

  19. Bisch, Ch., Etude de jets libres et de jets emis an culot d’un cylindre place dans un ecoulement hypersonique. Aeronautique et l’Astronautia ve No. 63, pp. 31–41, 1977–2.

    Google Scholar 

  20. Christ, S., Sherman, D.M., Glas, D.R., Study of the Highly Underexpanded Sonic Jet. AIAA Journal, Vol. 4, 1966, pp. 68–71.

    Article  Google Scholar 

  21. Allegre, J., Private Communication.

    Google Scholar 

  22. Lighthill, M.J., Dynamics of a dissociating gas, Part I Equilibrium Flow., J. Fluid Mech. Vol.2 1957, pp 1–32

    Article  Google Scholar 

  23. Stollery, J.L., Park, C., Computer solutions to the problem of vibrational relaxation in hypersonic nozzle flow. J. Fluid Mech. Vol.19, 1964, pp 113–123

    Article  Google Scholar 

  24. Bray K.N.C, Atomic recombination in a hypersonic wind tunnel nozzle., J. Fluid Mech. Vol.6, 1959, pp 1–32

    Article  Google Scholar 

  25. Koppenwallner G., Review of Flow Quality obtained in Conical and Contoured Nozzles of Hypersonic High Enthalpy Wind Tunnels. (Vibrational Relaxation). DFVLR IB 222–88 A 33, 1988

    Google Scholar 

  26. Anonym, Handbook of Supersonic Aerodynamics, Section 17, Ducts, Nozzles and Diffusors. NAVWEPS-Report 1488, Vol 6, U.S. Government Printing, 1964.

    Google Scholar 

  27. Allegre, J., Raffin, M., Etude experimentelle d’un diffuseur en ecoulement hypersonic de gaz rarefie. Lab. d’Aerothermique, Paris, Rep. 68–4, 1968.

    Google Scholar 

  28. Koppenwallner, G., Der hypersonische Vakuumwindkanal der Aerodynamischen Versuchsanstalt Göttingen. Betriebsverhalten und erste Ergebnisse über reale Gaseffekte in Düsenströmungen. DLR-FB 66–62, 1966.

    Google Scholar 

  29. Anonym, ARC heaters and MHD accelerators for aerodynamic purposes. AGARDograph 84, 1964

    Google Scholar 

  30. Boatright, W.B. et alea, Summary of some of the Arc Heated Hypersonic Windtunnel Development Effort underway at the Langley Research Center. AGARDograph 84, 1964, pp 353–378

    Google Scholar 

  31. Auweter-Kurz et alea, Steady State MPD Devices for Reentry Simulation., DGLR/AIAA/JSASS International Propulsion Conference, Garmisch Partenkirchen, W.Germany 1988

    Google Scholar 

  32. French, J.B., Molecular Beams for Rarefied Gas Dynamic Research. AGAR-Dograph 112, 1966.

    Google Scholar 

  33. Bossel U. Erzeugung intensiver Molekularstrahlen suborbitaler Energien fur Streuexperimente. DLR- FB 72–52, 1972

    Google Scholar 

  34. Kantrowitz, A., A High Intensity Source for the Molecular Beam. Rev. of Scientific Instruments, Vol. 22, May 1955, pp. 328–332.

    Article  Google Scholar 

  35. Bossel U. Molecular beam Extraction from Equilibrium gas Flow., AIAA J. Vol.9 1971, pp 2060–2062

    Article  Google Scholar 

  36. Campargue R., Lebehot A., High intensity supersonic molecular beams with Extremely narrow energy spread. Rarefied Gas Dynamics. Proc. 9th Int. Symposium, DFVLR Press 1974

    Google Scholar 

  37. Knuth, E.L. Kiuluva, N.M. Performance of an Arc- Heated Supersonic Molecular Beam and its Application to Molecule-Molecule Collisions. AGARD CP 12 (1967) pp 277–338

    Google Scholar 

  38. Stark J.P.W, Kinnerslay M.A., Development of a Low Power, High Velocity Atomic Oxygen Source. in Rarefied Gas Dynamics, Edited by E.P. Muntz et alea. Vol. 116 Progress in Astronautics and Aeronautics 1989, pp 156–170.

    Google Scholar 

  39. Skinner, G.T., On the design of experiments with a Shock tube Driven Molecular Beam. AGARD CP-12 pp 423–441

    Google Scholar 

  40. Jones T.V., Experiments on the Formatiuon of a 2 eV Argon Beam from a Shock Tube Source, Rarefied Gas Dynamics, Proc. 5th Symposium, Academic Press 1967, pp 377–409. 09.

    Google Scholar 

  41. Cross, J.B., Blais N.C., High -Energy/Intensity CW Atomic Oxygen Beam Source., in Rarefied Gas Dynamics, Edited by E.P. Muntz et alea. Vol. 116 Progress in Astronautics and Aeronautics 1989, pp 143–154..

    Google Scholar 

  42. Abuaf, N., Anderson, J.B., Andres, R.P., Molecular beams with Energies above one Electrn Volt. Science, 155 (1967), 997–999

    Article  Google Scholar 

  43. Abuaf, N., Anderson, J.B., Andres, R.P., Studies of Low Density Supersonic Jets, in Rarefied Gas Dynamics, Proc. 5th Symposium, Academic Press 1967, pp 1317–1336

    Google Scholar 

  44. Sjolander G.W., Froechtenicht J.F., Laboratory Results for 5-ev Oxygen Atoms on Selected Spacecraft Materials. in Rarefied Gas Dynamics, Edited by E.P. Muntz et alea. Vol. 116 Progress in Astronautics and Aeronautics; 1989, pp 180–179.

    Google Scholar 

  45. Moser H.O. Investigation of the influence of low density gas atmospheres on spacecraft by means of accelerated cluster ion beam, Z. Flugwiss. Weltraumforsch., 11 (1987) pp 291–294

    Google Scholar 

  46. Dankert, C., Legge, H., High Intensity Molecular Beams Skimmed in Continuum Flow. Rarefied Gas Dynamics, Vol, 74, pp. 882–894. Progress in Astronautics and Aeronautics, 1981; ed. S. Fisher.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koppenwallner, G. (1992). Low Density Facilities. In: Bertin, J.J., Periaux, J., Ballmann, J. (eds) Advances in Hypersonics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0379-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0379-7_6

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6734-8

  • Online ISBN: 978-1-4612-0379-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics