Skip to main content

High-Enthalpy Testing in Hypersonic Shock Tunnels

  • Chapter
Advances in Hypersonics

Abstract

After an introduction into different types of high-enthalpy hypersonic ground test facilities the performance of the shock tunnel is described in detail with special consideration given to the Aachen tunnel. The basic shock tube performance is presented with numerical calculations using an equilibrium air model. The influence of boundary layer effects and van der Waals driver gas effects on the shock tube flow is included. Numerical calculations of equilibrium and frozen air flow in the nozzle are shown. The relaxation zone behind a bow shock is calculated using the air model together with 34 elementary reactions. The attainable simulation parameters are discussed. The experimental methods cover the measurements of pressures, forces and moments and heat flux; time resolved flow visualization is possible. The experimental results given include nozzle calibrations and a study of the nozzle starting process. A table is included giving properties behind incident and reflected shocks at initial pressures of 0.01, 0.1 and 1 bar for equilibrium air.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Charwat, A.F.: A survey of hypersonic problems and the characteristics of shock-heated tunnels, ZfW, 8, 125– 134 (1960).

    Google Scholar 

  2. Wittliff, Ch.E.: Short duration facilities. Short Course in Hypersonics. State University of New York at Buffalo, Calspan-UB Research Center. August 1986.

    Google Scholar 

  3. Russo, A.L.; Hertzberg, A.: Modifications of the basic shock tube to improve its performance. Cornell Aeron. Lab., AD 162251 (1958).

    Google Scholar 

  4. Davies, L.: The interaction of the reflected shock with the boundary layer in a shock tube and its influence on the duration of hot flow in the reflected-shock tunnel. Part I. Aeron. Res. Council C.P. No. 880 (1967).

    Google Scholar 

  5. Grönig, H.; Schumacher, H.: Experimented Untersuchungen an Raum-flugkörpern im Hyperschallbereich. Teil II: Entwicklung und Aufbau eines Stoßwellenkanals mit erweitertem Leistungsbereich. Stoßwellenlabor, RWTH Aachen, BMFT-FB W 75–22 (1975).

    Google Scholar 

  6. Hertzberg, A.; Wittliff, Ch.E.; Hall, J.G.: Summary of shock tunnel development and application to hypersonic research. Cornell Aeron. Lab. Rep. No. AD-1052-A-12 (1961).

    Google Scholar 

  7. Dunn, M.G.: Experimental shock-tube investigation of conditions behind incident and reflected shocks in air for shock Mach numbers between between 8.5 and 16.5. Fifth Hypervelocity Techniques Symposium, March 1967, Denver, Colorado.

    Google Scholar 

  8. Wittliff, Ch.E.; Wilson, M.R.; Hertzberg, A.: The tailored-interface hypersonic shock tunnel. J. Aerospace Sci. 26, 219–228 (1959).

    Google Scholar 

  9. Warren, W.R.; Harris, C.J.: A critique of high performance shock tube driving techniques. In: I.I. Glass, Ed.: Shock Tubes. Proceedings of the Seventh International Shock Tube Symposium. University of Toronto Press, Toronto and Buffalo, 1970, pp. 143–176.

    Google Scholar 

  10. Glass, I.I. Ed.: Shock Tubes. Proceedings of the Seventh International Shock Tube Symposium. University of Toronto Press, Toronto and Buffalo, 1970, pp. 177– 538.

    Google Scholar 

  11. Stalker, R.J.: Isentropic compression of shock tube driver gas. ARS J. 30, 564 (1960).

    Google Scholar 

  12. Stollery, J.L.; Stalker, R.J.: The development and use of free piston wind tunnels. In: R.D. Archer & B.E. Milton (Eds.): Shock Tube and Waves. New South Wales University Press, Sydney, 1983, pp. 41–50.

    Google Scholar 

  13. Stalker, R.J.: Development of a hypervelocity wind tunnel. The Aeronautical Journal 76, 374–384 (1972).

    Google Scholar 

  14. Enkenhus, K.R.: Intermit tend Facilities. VKI Short Course on Advanced Shock Tube Techniques, Febr. 1969.

    Google Scholar 

  15. Wendt, J.F.: European hypersonic wind tunnels. AGARD Conference Proceedings No. 428: Aerodynamics of Hypersonic lifting Vehicles. AGARD-CP-428, Nov. 1987, paper 2.

    Google Scholar 

  16. Bütefisch, K.-A.; Hefer, G.; Hornung, H.; Koppenwallner, G.; Stanewsky, E.: Pflichtenheft für eine Konzeptstudie des geplanten Hochenthalpiewindkanals HEG. DFVLR IB 222–87 A 09, 9. Mai 1987, Göttingen.

    Google Scholar 

  17. Oertel, H.: Stoßrohre, Springer-Verlag, Wien-New York, 1966 p. 670.

    Google Scholar 

  18. Thompson, Ph.A.: Compressible-Fluid Dynamics, McGraw- Hill Book Company, New York, 1972, Section 8.9.

    Google Scholar 

  19. Liepmann, H.W.; Roshko, A.: Elements of Gasdynamics, John Wiley & Sons, New York, 1960, Section 3.2.

    Google Scholar 

  20. Glass, I.I.; Hall, F.G.: Shock Tubes: UTIAS Review No. 12, Part I + II, May 1958.

    Google Scholar 

  21. Van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comp. Phys. 32, 101–136 (1979).

    Article  Google Scholar 

  22. Esser, B.; Grönig, H.: Equilibrium shock tube flow of real gases. In: H. Gronig, Ed.: Shock Tubes and Waves. Proceedings of the 16th Int. Symp. on Shock Tubes and Waves. VCH-Verlagsgesellschaft, Weinheim 1988, 663–669.

    Google Scholar 

  23. Vincenti, W.G.; Kruger, Ch.H.: Introduction to Physical Gas Dynamics, Wiley & Sons, New York, 1967, Chapter IV, Sect. 10.

    Google Scholar 

  24. Horton, T.E.: The Computation of Partition Functions and Thermochemistry Data for Atomic, Ionic, Diatomic and Polyatomic Species, JPL Technical Report 32–1425 (1970).

    Google Scholar 

  25. Horton, T.E.; Menard, W.A.: A Program for Computing Shock-Tube Gas-dynamics Properties, JPL Technical Report 32–1350 (1969).

    Google Scholar 

  26. Huber, K.P.; Herzberg, G.: Molecular Spectra and Molecular Structure, IV, Constants of Diatomic Molecules, van Nostrand Reinhold, New York, 1979.

    Google Scholar 

  27. Smoller, J.: Shock Waves and Reaction-Diffusion Equations, Springer, New York, 1983.

    Book  Google Scholar 

  28. Ames Research Staff: Equations, tables and charts for compressible flow. Ames Aeronautical Laboratory, Rep. 1135 (1952).

    Google Scholar 

  29. Mirels, H.: Shock tube testing time limitation due to turbulent-wall boundary layer. AIAA J. 2, 84–93 (1964).

    Article  Google Scholar 

  30. Vyska, K.: Akustische Theorie zur Ermittlung des Einflusses des Rei-bungsdruckabfalles auf den Gaszustand hinter einer reflektierten Stoflwelle in einem Stoflwellenrohr. PhD Thesis, RWTH Aachen, 1969.

    Google Scholar 

  31. Davies, L.; Wilson, J.L.: Influence of reflected shock and boundary layer interaction on shock-tube flows. Phys. Fluids 12, Supp. I, I-37-I-43 (1969).

    Google Scholar 

  32. Mark, H.: The interaction of a reflected shock wave with the boundary layer in a shock tube. NACA TM 1418, March 1958.

    Google Scholar 

  33. Holder, D.W.; Schultz, D.L.: The duration and properties of the flow in a hypersonic shock tunnel. In: F.R. Riddell, Ed: Hypersonic Flow Research, Academic Press, New York, 1962 pp. 513–546.

    Google Scholar 

  34. Stalker, R.J.; Crane, K.C.A.: Driver gas contamination in a high-enthalpy reflected shock tunnel. AIAA J. 16, 277–279 (1978).

    Article  Google Scholar 

  35. Lapworth, K.C., Townsend, J.E.G.: Temperature and pressure studies in the reservoir of a reflected-shock hypersonic tunnel. Nat. Phys. Lab., NPL AERO Rep. 1127, Dec. 1964.

    Google Scholar 

  36. Bull, D.C.; Edwards, D.H.: An investigation of the reflected shock interaction process in a shock tube. AIAA J. 6, 1549–1555 (1968).

    Article  Google Scholar 

  37. Davies, L.; Pennelegion, L.; Gough, P.; Dolman, K.: The effects of high pressure on the flow in the reflected shock tunnel. National Physical Laboratory, NPL AERO REPORT 1072, ARC 25071, Hyp. 349, Sept. 1963.

    Google Scholar 

  38. Kurth, G.: Effects of van der Waals gas driver on shock tube flow. Diploma Thesis, Shock Wave Laboratory, RWTH Aachen, 1988.

    Google Scholar 

  39. Burke, A.F.; Bird, K.D.: The use of conical and contoured expansion nozzles in hypervelocity facilities. CAL Report No. 112, July 1962.

    Google Scholar 

  40. Geiger, R.E.: Short hypersonic contoured nozzles. ARS J. 30, 368–369 (1960).

    Google Scholar 

  41. Baradell, D.L.; Bertram, M.H.: The blunt plate in hypersonic flow. NASA TN D-408, October 1960.

    Google Scholar 

  42. Ritzerfeld, E.: Work in progress in Shock Wave Laboratory, RWTH Aachen (1988).

    Google Scholar 

  43. Lee, J.D.: Axisymmetric nozzles for hypersonic flows. OSU Rept. No. TN (ALOSU) 459–1, WADC TN 59–228, June 1959.

    Google Scholar 

  44. Stalker, R.J.: Shock tunnels for real gas hypersonics. In: Aerodynamics of Hypersonic Lifting Vehicles. AGARD Conference Proceedings No. 428, 1987.

    Google Scholar 

  45. Park, Ch.: Convergence of computation of chemical reacting flows. In: J.N. Moss & C.D. Scott, Eds.: Thermophysical Aspects of Re-entry Flow. AIAA Series Prog, in Astron. and Aeron. Vol. 103, pp. 478–513, (1986).

    Google Scholar 

  46. Bernstein, L.: Tabulated solutions of the equilibrium gas properties behind the incident and reflected normal shock-wave in a shock-tube. I-Nitrogen, II-Oxygen. Ministry of Aviation, Aeronautical Res. Council C.P. No. 626, 1963.

    Google Scholar 

  47. Finke, K.H.: Die zentrierte zweidimensionale Nichtgleichgewichts-Expan-sionsströmung im Hyperschallbereich. Dissertation Aachen, 1970.

    Google Scholar 

  48. Boudreau, A.H.; Adams, J.C. Jr.: Characterization of hypersonic wind tunnel flow fields. AIAA 15th Aerodynamic Testing Conference, May 18–20, 1988.

    Google Scholar 

  49. Hall, T.G.; Treanor, Ch.E.: Nonequilibrium effects in supersonic-nozzle flows. Technical Report, CAL No. 163, March 1968.

    Google Scholar 

  50. Gibson, W.E.; Marrone, P.V.: A similitude for non-equilibrium phenomena in hypersonic flight. AGARDograph 68: High Temperature Aspects of Hypersonic Flow. Pergamon Press, Oxford, 1963, pp. 105–129.

    Google Scholar 

  51. Cox, R.N.; Crabtree, L.F.: Elements of Hypersonic Aerodynamics. The English Universities Press Ltd., London 1965, p. 40.

    Google Scholar 

  52. Hayes, W.D.; Probstein, R.F.: Hypersonic Flow Theory. Academic Press, New York 1959, p. 25.

    Google Scholar 

  53. Koppenwallner, G.: Aerothermodynamik — Ein Schlüssel zu neuen Transport geraten der Luft- und Raumfahrt. Z. Flugwiss. Weltraumforsch. 12, 6–18 (1988).

    Google Scholar 

  54. Probstein, R.F.: Shock wave and flow field development in hypersonic re-entry. ARS J. 31, 185–194 (1961).

    Google Scholar 

  55. Chapman, D.R.; Rubesin, M.W.: Temperature and velocity profiles in the compressible laminar boundary layer with arbitrary distribution of surface temperature. J. Aeron. Sci. 16, 547–565 (1949).

    Google Scholar 

  56. Chevallier, J.P.: Rétrospective sur les moyens d’essais et de mesure en hypersonique. 22ème Colloque d’Aerodynamique Appliqué, Lille 1985.

    Google Scholar 

  57. Müller, H.M; Grönig, H.: Experimental investigations on shock focusing in water. Proc. 12th Int. Congr. on Acoustics Vol. III, H3–3, Toronto 1986.

    Google Scholar 

  58. Bernstein, L.: Force measurement in short-duration hypersonic facilities. AGARDograph No. 214, Nov. 1975, London.

    Google Scholar 

  59. Anonymous: Hypersonic shock tunnel. Description and capabilities. ARVIN/CALSPAN, Dec. 1984.

    Google Scholar 

  60. Schultz, D.L.; Jones, T.V.: Heat transfer measurements in short-duration hypersonic facilities. AGARDograph No. 165, Febr. 1973.

    Google Scholar 

  61. Vidal, R.J.: Model instrumentation techniques for heat transfer and force measurements in a hypersonic shock tunnel. Corn. Aeron. Lab. Rep. AD-917-A1, 1956.

    Google Scholar 

  62. Cook, W.J.; Felderman, E.J.: Reduction of data from thin film and transfer gauges. A concise numerical technique AIAA J. 4, 561–562 (1966).

    Google Scholar 

  63. Merzkirch, W.: Techniques of flow visualization. AGARD AG 302, Dec. 1987.

    Google Scholar 

  64. Miyashiro, S.; Grönig, H.: Low-jitter reliable nanosecond spark source for optical short-duration measurements. Exp. in Fluids 3, 71–75 (1985).

    Google Scholar 

  65. Van der Meer, J.: Kurzzeitmessung der Rotationstemperatur von Stickstoff mit Hilfe der Elektronenstrahlfluoreszenz. Dissertation, RWTH Aachen, 1977.

    Google Scholar 

  66. Schneider, K.-P.; Park, Ch.: Shock tube study of ionization rates of NaCl-contaminated argon. Phys. Fluids 18, 969–981 (1975).

    Article  Google Scholar 

  67. Fritz, K.R.: Zeitaufgeloste massenspektrometrische Untersuchungen der Kinetik schneller homogener Reaktionen hinter reflektierten Stofiwellen. Dissertation RWTH Aachen, 1976.

    Google Scholar 

  68. Thor, H.J.; Gronig, H.: Dynamic measurement of the electron velocity distribution in rarefied weakly ionized argon. Experiments in Fluids 2, 42–46 (1984).

    Article  Google Scholar 

  69. Smith, C.E.: The starting process in a hypersonic nozzle. J. Fluid Mech. 24, 625–640 (1966).

    Article  Google Scholar 

  70. Holden, M.S.: Establishment time of laminar separated flows. AIAA J. 9, 2296–2298 (1978).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Esser, B., Grönig, H., Olivier, H. (1992). High-Enthalpy Testing in Hypersonic Shock Tunnels. In: Bertin, J.J., Periaux, J., Ballmann, J. (eds) Advances in Hypersonics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0379-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0379-7_5

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6734-8

  • Online ISBN: 978-1-4612-0379-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics