Skip to main content

Wind-Tunnel Based Definition of the AFE Aerothermodynamic Environment

  • Chapter
Advances in Hypersonics
  • 424 Accesses

Abstract

The Aeroassist Flight Experiment (AFE), scheduled to be performed in 1994, will serve as a precursor for aeroassisted space transfer vehicles (ASTV’s) and is representative of entry concepts being considered for missions to Mars. Rationale for the AFE is reviewed briefly as are the various experiments carried aboard the vehicle. The approach used to determine hypersonic aerodynamic and aerothermodynamic characteristics over a wide range of simulation parameters in ground-based facilities is presented. Facilities, instrumentation and test procedures employed in the establishment of the data base are discussed. Measurements illustrating the effects of hypersonic simulation parameters, particularly normal-shock density ratio (an important parameter for hypersonic blunt bodies), and attitude on aerodynamic and aerothermodynamic characteristics are presented, and predictions from computational fluid dynamic (CFD) computer codes are compared with measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography for AFE

  • Andrews, D. G., Caluori, V. A., Bloetscher F. 1982. Optimization of Aerobrake Orbital Transfer Vehicle. Thermodynamics of Atmospheric Entry, AIAA Progress in Astronautics and Aeronautics. Vol. 82. pp. 455–476.

    Google Scholar 

  • Austin, R. E., Cruz, M. I., French, Jr. R. 1982. System Design Concepts and Requirements for Aeroassisted Orbital Transfer Vehicles. AIAA Pap. No. 82–1379.

    Google Scholar 

  • Bernot, P. T. 1965. Static Stability Characteristics of Several Raked-Off Circular and Elliptical Cones at Mach 6.7. NASA TN D-3053.

    Google Scholar 

  • Bird, G. A. 1986. Direct Simulation of Typical AOTV Entry Flows. AIAA Pap. No. 86–1310.

    Google Scholar 

  • Bird, G. A. 1987. Nonequilibrium Radiation During Re-Entry at 10 Km/S. AIAA-87–1543.

    Google Scholar 

  • Blanchard, R. C. 1989. Rarefied-Flow Aerodynamics Measurement Experiment on the AFE. AIAA-89–0636.

    Google Scholar 

  • Blanchard, R. C. and Hinson, E. W. 1989. Free-Molecule-Flow Force and Moment Coefficients of the Aeroassist Flight Experiment Vehicle. NASA TM 101600.

    Google Scholar 

  • Bradt, J. E. and Andrews, D. G. 1984. Impact of Upper Atmosphere Density Distribution on AOTV Design. IAF Paper No. 84–435.

    Google Scholar 

  • Braun, Robert D. 1987. Trajectory Analysis of a Low Lift/Drag Aeroassisted Orbit Transfer Vehicle. AAS 87–123.

    Google Scholar 

  • Candler, G. and Park, C. 1988. The Computation of Radiation from Nonequilibrium Hypersonic Flows. AIAA 88–2678.

    Google Scholar 

  • Carlson, Leland A. 1988. Approximation for Hypervelocity Nonequilibrium Radiating, Reacting, and Conduction Stagnation Regions. AIAA 88–2672.

    Google Scholar 

  • Carlson, Leland A., Bobskill, Glen J., Greendyke, Robert B. 1988. Comparisons of Vibration Dissociation Coupling and Radiative Heat Transfer Models for AOTV/AFE Flowfields. AIAA 88–2673.

    Google Scholar 

  • Carlson, Leland A., Gaily, T. A. 1989. The Effect of Electron Temperature and Impact Ionization on Martian Return AOTV Flowfields. AIAA 89–1729.

    Google Scholar 

  • Celenligil, M. C., Moss, J. N., and Blanchard, R. C. 1989. Three-Dimensional Flow Simulation about the AFE Vehicle in the Transitional Regime. AIAA 89–0245.

    Google Scholar 

  • Celenligil, M. C., Moss, J. N., and Bird, Graeme A. 1989. Direct Simulation of Three-Dimensional Flow about the AFE Vehicle at High Altitudes. AIAA Progress in Astronautics and Aeronautics. Vol. 118.

    Google Scholar 

  • Celenligil, M. C., Moss, J. N., Bird, C. A. 1989. Direct Simulation of Three-Dimensional Flow about the AFE Vehicle at High Altitudes. AIAA Progress in Astronautics and Aeronautics.

    Google Scholar 

  • Cerimele, C., Skalecki, L., Gamble, J. 1984. Meteorological Accuracy Requirements for Aerobraking Orbital Transfer Vehicles. AIAA Pap. No. 84–0030.

    Google Scholar 

  • Cheatwood, F. McNeil, DeJarnette, Fred R., and Hamilton, Harris H. 1986. Geometrical Description for a Proposed Aeroassist Flight Experiment Vehicle. NASA TM 87714.

    Google Scholar 

  • Cheatwood, F. M., and DeJarnette, F. R. 1988. An Interactive User-Friendly Approach to Surface-Fitting Three-Dimensional Geometries. NASA Contractor Report 4126.

    Google Scholar 

  • Cheatwood, F. M., DeJarnette, F. R., and Hamilton, H. H. 1987. An Interactive Approach to Surface-Fitting Complex Geometries for Flowfield Applications. AIAA-87–1476.

    Google Scholar 

  • Davies, C. B., and Park, C. 1986. Aerodynamic and Thermal Characteristics of Modified Raked-Off Blunted Cone. AIAA 86–1309.

    Google Scholar 

  • Davy, W. C., Park, C., and Arnold J. 1985. Radiometer Experiment for the AFE. AIAA-85–0967.

    Google Scholar 

  • Dogra, Virendra K., Moss, Jim N., and Simmonds, Ann L. 1987. Direct Simulation of Aerothermal Loads for AFE Vehicle. AIAA-87–1546.

    Google Scholar 

  • Gamble, J., Cerimele, C., Spratlin, K. 1983. Aerobraking of a Low L/D Manned Vehicle from GEO Return to Rendezvous with the Space Shuttle. AIAA Pap. No. 83–2110.

    Google Scholar 

  • Gamble, J., Spratlin, K., Skalecki, L. 1984. Lateral Directional Requirements for a Low L/D Aeromaneuvering Orbital Transfer Vehicle. AIAA Pap. No. 84–2123.

    Google Scholar 

  • Gibson, Lorelei S., Siemens, Paul M., III, and Kern, F. A. 1989. Pressure Distribution and Air Data System for the AFE. ISA Paper 89–0048.

    Google Scholar 

  • Gnoffo, P. A., and McCandless, R. S. 1986. Three-Dimensional AOTV Flowfields in Chemical Nonequilibrium. AIAA 86–0230.

    Google Scholar 

  • Gnoffo, P. A. 1986. Application of Program LAURA to Three-Dimensional AOTV Flowfields. AIAA 86–0565.

    Google Scholar 

  • Gnoffo, P. A., and McCandless, R. S. 1987. Enhancements to Program LAURA for Computation of Three-Dimensional Hypersonic Flow. AIAA 87–0280.

    Google Scholar 

  • Gnoffo, P. A. 1989. Upwind-Biased, Point-Implicit Relaxation Strategies for Viscous, Hypersonic Flows. AIAA CP 89–1972.

    Google Scholar 

  • Gnoffo, P. A. 1989. A Code Calibration Program in Support of the Aeroassist Flight Experiment. AIAA 89–1673.

    Google Scholar 

  • Gomez, R. J., Li, C. P. 1987. Real-Gas Aerodynamic Predictions for an AFE Configuration. AIAA Pap. No. 87–2488.

    Google Scholar 

  • Greendyke, R. B., Hartung, L. C. 1990. An Approximate Method for the Calculation of Nonequilibrium Radiative Heat Transfer. AIAA Pap. No. 90–0135.

    Google Scholar 

  • Gupta, Roop N. 1988. Stagnation Flowfield Ionization for an AFE Vehicle. AIAA Pap. No. 88–2613.

    Google Scholar 

  • Gupta, Roop N. 1987. Navier-Stokes and Viscous Shock-Layer Solutions for Radiating Hypersonic Flows. AIAA 87–1576.

    Google Scholar 

  • Gupta, Roop N. 1990. A Review of Reaction Rates and Thermodynamic and Transport Properties for the 11-Species Air Model for Chemical and Thermal Nonequilibrium Calculations to 30000 K. NASA TM 101528.

    Google Scholar 

  • Hamilton, H. Harris, and Weilmuenster, K. James. 1986. Calculation of Convective Heating on Proposed AFE Vehicle. AIAA 86–1308.

    Google Scholar 

  • Ho, T. Carbon-Carbon Hexagonal Tile Thermal Protection System for an Aerobrake OTV. NASA-CR-171887.

    Google Scholar 

  • Jones, J. J. 1987. The Rationale for an Aeroassist Flight Experiment. AIAA 87–1508.

    Google Scholar 

  • Li, C. P. 1987. Implicit Computation of Chemically Reactive Flow About Hypersonic Vehicles. AIAA Pap. No. 87–0282.

    Google Scholar 

  • Li, C. P., and Wey, T. C. 1988. Numerical Simulation of Hypersonic Flow over an AFE Vehicle. AIAA Pap. No. 88–2675.

    Google Scholar 

  • Mayo, E. E., Lamb, R. H., Romere, P. O. 1965. Newtonian Aerodynamics for Blunted Raked-Off Circular Cones and Raked-Off Elliptical Cones. NASA TN D-2624.

    Google Scholar 

  • Menees, G. P., Park, C. 1987. Design and Performance Analysis of a Conical Aerobrake Orbital Transfer Vehicle Concept. AIAA Pap. No. 87–0410.

    Google Scholar 

  • Menees, G. P., Davies, C. B., Wilson, J. F., and Brown, K. G. 1984. Aerothermodynamic Heating Analysis of Aerobraking and Aeromaneuvering Orbital-Transfer Vehicle. AIAA Pap. No. 84–1711.

    Google Scholar 

  • Micol, J. R. 1987. Simulation of Real-Gas Effects on Pressure Distribution for a Proposed Aeroassist Flight Experiment Vehicle and Comparison to Prediction. AIAA 87–2368.

    Google Scholar 

  • Micol, J. R. 1989. Experimental and Predicted Pressure and Heating Distributions for an Aeroassist Flight Experiment Vehicle in Air at Mach 10. AIAA 89–1731.

    Google Scholar 

  • Minier, Elizabeth A., and Suit, William T. 1988. Effect of Transition Aerodynamics on AFE Trajectories. NASA TM 100546.

    Google Scholar 

  • Molloy, J. K. 1966. Aerodynamic Characteristics of Raked-Off Circular and Elliptical Cones at a Mach Number of 20 in Helium. NASA TN D-3401.

    Google Scholar 

  • Moss, J. N., Bird, G. A., and Dogra, V. K. 1988. Nonequilibrium Thermal Radiation for an Aeroassist Flight Experiment Vehicle. AIAA 88–0081.

    Google Scholar 

  • Moss, J. N., and Price, J. M. 1988. Direct Simulation of AFE Forebody and Wake Flow with Thermal Radiation. NASA TM 100673.

    Google Scholar 

  • Moss, J. N. 1990. Enhancements and Applications of DSMC for Hypersonic Rarefied Rows. Presented at 17th International Symposium on Rarefied Gas Dynamics, Aachen, Germany, July 8–14, 1990.

    Google Scholar 

  • Palmer, Grant. 1989. The Development of an Explicit Thermochemical Nonequilibrium Algorithm and Its Application to Compute Three Dimensional AFE Flowfields. AIAA 89–1701.

    Google Scholar 

  • Park, C. 1984. Calculation of Nonequilibrium Radiation in AOTV Flight Regimes. AIAA 84–0306.

    Google Scholar 

  • Park, C. 1987. A Survey of Aerobraking Orbital Transfer Vehicle Design Concepts. AIAA 87–0514.

    Google Scholar 

  • Park, Chul. 1984. Problems of Rate Chemistry in the Flight Regimes of Aeroassisted OTV’s. AIAA 84–1730.

    Google Scholar 

  • Park, Chul. 1987. Assessment of Two-Temperature Kinetic Model for Ionizing Air. AIAA 87–1574.

    Google Scholar 

  • Rehder, J. J. 1984. Multiple Pass Trajectories for an Aeroassisted Orbital Transfer Vehicle. AIAA 84–0407.

    Google Scholar 

  • Ried, Robert C. 1986. The Challenge of Aerobraking. AAS 86–349.

    Google Scholar 

  • Roberts, B. B. 1985. System Analysis and Technology Development for the NASAOTV. AIAA 85–0965.

    Google Scholar 

  • Rochelle, W. C., Ting, P. C., Mueller, S. R., Colovin, J. E., Bouslog, S. A., Curry, D. M., and Scott, C. D. 1989. Aerobrake Heating Rate Sensitivity Study for the Aeroassist Flight Experiment (AFE). AIAA 89–1733.

    Google Scholar 

  • Sambamurthi, Jay K., Warmbrod, J. W., Schmitz, C. P. 1988. An Engineering Approach for Calculating AFE Environments. NASA-CR-179367.

    Google Scholar 

  • Scott, C. D. Ried, R. C., Maraia, R. J., Li, C. P., Deny, S. M. 1984. An AOTV Aeroheating and Thermal Protection Study. AIAA Pap. No. 84–1710.

    Google Scholar 

  • Scott, C. D., Roberts, B. B., Nagy, K., Taylor, P., Gamble, J. D., Cerimele, C. J., Kroll, K. R., Li, C. P., and Ried, R. C. 1988. Design Study of an Integrated Aerobraking Orbital Transfer Vehicle. NASA TM 58264.

    Google Scholar 

  • Scott, Carl D., Ried, R. C., Maraia, R. J., L., Chien-P, and Deny S. M. The Aerodynamics and Thermal Protection System Challenges for an Aerobraking Orbital Transfer Vehicle.

    Google Scholar 

  • Shinn, J. L., Jones, J. J. 1983. Chemical Nonequilibrium Effects on Flowfields for Aeroassist Orbital Transfer Vehicles. AIAA Pap. No. 83–0214.

    Google Scholar 

  • Stewart, David A., and Kolodziej, Paul. 1986. Heating Distribution Comparison Between Asymmetric and Symmetric Blunt Cones. AIAA 86–1307.

    Google Scholar 

  • Stewart, David A., and Kolodziej, Paul. 1988. Wall Catalysis Experiment on AFE. AIAA 88–2674.

    Google Scholar 

  • Striepe, Scott A., and Suit, William T. 1988. AFE Guidance “Quiet Time”. NASA TM 100556.

    Google Scholar 

  • Talay, T. A., White, N. H., Naftel, J. C. 1985. Impact of Atmospheric Uncertainties and Viscous Interaction Effects on the Performance of Aeroassisted Orbital Transfer Vehicles. Thermal Design of Aeroassisted Orbital Transfer Vehicle--Progress in Astronautics and Aeronautics, Vol. 96, pp. 198–229.

    Google Scholar 

  • Walberg, G. D. 1982. A Review of Aeroassisted Orbit Transfer. AIAA 82–1378.

    Google Scholar 

  • Walberg, G. D. 1983. Aeroassisted Orbit Transfer--Window Opens on Missions. Astronautics and Aeronautics, Vol. 12, No. 11, pp. 36–43.

    Google Scholar 

  • Walberg, G. D. 1985. A Survey of Aeroassisted Orbital Transfer. Journal of Spacecraft and Rockets, Vol. 22, No. 1, pp. 3–18.

    Article  Google Scholar 

  • Walberg, G. D., Siemers, P. M., III, Calloway, R. L., and Jones, J. J. 1987. The Aeroassist Flight Experiment. IAF-87–197.

    Google Scholar 

  • Weilmuenster, K. J., and Hamilton, H. H. 1986. A Comparison of Computed and Measured Aerodynamic Characteristics of a Proposed Aeroassist Flight Experiment Configuration. AIAA 86–1366, also NASA TM 89034.

    Google Scholar 

  • Wells, William L. 1987. Wind-Tunnel Preflight Test Program for Aeroassist Flight Experiment. Technical Papers--AIAA Atmospheric Flight Mechanics Conference, pp. 151–163.

    Google Scholar 

  • Wells, William L. 1988. Free-Shear-Layer Turning Angle in Wake of AFE Vehicle at Incidence in M = 10 Air and M = 6 CF4. NASA TM 100479.

    Google Scholar 

  • Wells, William L. 1989. Measured and Predicted Aerodynamic Heating on a Cylinder in Wake of AFE Configuration at Incidence. AIAA 89–2162.

    Google Scholar 

  • Wells, William L., and Franks, A. M. 1988. Measured and Predicted Shock Shapes for AFE Configuration at Mach 6 in Air and in CF4. NASA TM 100660.

    Google Scholar 

  • Wells, William L. 1990. Measured and Predicted Aerodynamic Coefficients and Shock Shapes for Aeroassist Flight Experiment (AFE) Configuration. NASA TP 2956.

    Google Scholar 

  • Bernot, P. T. 1965. Static Stability Characteristics of Severai Raked-Off Circular and Elliptical Cones at Mach 6.7. NASA TN D-3053.

    Google Scholar 

  • Cheatwood, F. McNeil, DeJamette, Fred R., and Hamilton, H. Harris. 1986. Geometrical Description for a Proposed Aeroassist Right Experiment Vehicle. NASA TM 87714.

    Google Scholar 

  • Cook, W. J., and Felderman, E. J. 1966. Reduction of Data from Thin-Film Heat Transfer Gages: A Concise Numerical Technique,” AIAA Journal. Vol. 4, pp. 561–562.

    Article  Google Scholar 

  • Fay, J. A., and Riddell F. R. 1958. Theory of Stagnation Point Heat Transfer in Dissociated Air. Journal of Aeronautics Science. Vol. 25, No. 2, pp. 73–85.

    Google Scholar 

  • Gnoffo, P. A. 1989. A Code Calibration Program in Support of the Aeroassist Flight Experiment. AIAA Pap. No. 89–1673.

    Google Scholar 

  • Hamilton, H. Harris, and Weilmuenster, K. James. 1986. Calculation of Convective Heating on Proposed AFE Vehicle. AIAA Pap. No. 86–1308.

    Google Scholar 

  • Hayes, Wallace D., and Probstein, Ronald F. 1959. Viscous Hypersonic Similitude. IAS Rep. No. 59–63.

    Google Scholar 

  • Jones, J. J. 1987. The Rationale for an Aeroassist Flight Experiment. AIAA Pap. No. 87–1508.

    Google Scholar 

  • Jones, Robert A., and Hunt, James L. 1969. (appendix A by James L. Hunt, Kathryn A. Smith, and Robert B. Reynolds and appendix B by James L. Hunt and Lillian R. Boney), Use of Tetrafluoromethane to Simulate Real-Gas Effects on the Hypersonic Aerodynamics of Blunt Vehicles. NASA TRR-312.

    Google Scholar 

  • Jones, R. A., and Hunt, J. L. 1966. Use of Fusible Temperature Indicator for Obtaining Quantitative Aerodynamic Heat-Transfer Data, NASA TR R-239.

    Google Scholar 

  • Mayo, E. E., Lamb, R. H., Romere, P. O.1965. Newtonian Aerodynamics for Blunted Raked-Off Circular Cones and Raked-Off Elliptical Cones. NASA TN D-2624.

    Google Scholar 

  • Micol, J. R. 1987. Simulation of Real-Gas Effects on Pressure Distribution for a Proposed Aeroassist Flight Experiment Vehicle and Comparison to Prediction. AIAA Pap. No. 87–2368.

    Google Scholar 

  • Micol, J. R. 1989. Experimental and Predicted Pressure and Heating Distributions for an Aeroassist Flight Experiment Vehicle in Air at Mach 10. AIAA Pap. No. 89–1731.

    Google Scholar 

  • Midden, Raymond E., and Miller, Charles G., III. 1985. Description and Calibration of the Langley Hypersonic CF4 Tunnel--A Facility for Simulating Low @ Flow as Occurs for a Real Gas. NASA TP-2384.

    Google Scholar 

  • Miller, Charles G., III. 1975. Shock Shapes on Blunt Bodies in Hypersonic-Hypervelocity Helium, Air, and CO2 Flows, and Calibration Results in Langley 6-Inch Expansion Tube. NASA TN D-7800.

    Google Scholar 

  • Miller, Charles G., III. 1975. A Comparison of Measured and Predicted Sphere Shock Shapes in Hypersonic Rows with Density Ratios from 4 to 19. NASA TN D-8076.

    Google Scholar 

  • Miller, Charles G., III. 1981. Comparison of Thin-Film Resistance Heat-Transfer Gages with Thin-Skin Transient Calorimeter Gages in Conventional Hypersonic Wind Tunnels. NASA TM-83197.

    Google Scholar 

  • Miller, Charles G., III, and Gnoffo, Peter A. 1981. Pressure Distributions and Shock Shapes for 12.84°/7° On-Axis and Bent-Nose Biconics in Air at Mach 6. NASA TM-83222.

    Google Scholar 

  • Miller, C. G., III. 1984. Experimental and Predicted Heating Distributions for Biconics at Incidence in Air at Mach 10. NASA TP 2334.

    Google Scholar 

  • Miller, Charles G., III, Micol, John R., and Gnoffo, Peter A. 1985. Laminar Heat-Transfer Distributions on Biconics at Incidence in Hypersonic-Hypervelocity Flows. NASA TP-2213.

    Google Scholar 

  • Miller, C. G., and Smith, F. M. 1986. Langley Hypersonic Facilities Complex-Description and Application. AIAA Pap. No. 86–0741.

    Google Scholar 

  • Miller, C. G. 1990. Langley Hypersonic Aerodynamic/Aerothermodynamic Testing Capabilities-Present and Future. AIAA Pap. No. 90–1376.

    Google Scholar 

  • Molloy, J. K. 1966. Aerodynamic Characteristics of Raked-Off Circular and Elliptical Cones at a Mach Number of 20 in Helium. NASA TN D-3401.

    Google Scholar 

  • Neumann, R. D. 1988. Aerothermodynamic Instrumentation. AGARD Rep. No. 761, pp. 4–1 to 4–40.

    Google Scholar 

  • Roberts, B. B. 1985. System Analysis and Technology Development for the NASA OTV. AIAA Pap. No. 85–0965.

    Google Scholar 

  • Walberg, G. D. 1982. A Review of Aeroassisted Orbit Transfer. AIAA Pap. No. 82–1378.

    Google Scholar 

  • Walberg, G. D., Siemers, P. M., III, Calloway, R. L., and Jones, J. J. 1987. The Aeroassist Flight Experiment. IAF-87–197.

    Google Scholar 

  • Weilmuenster, K. J., and Hamilton, H. H. 1986. A Comparison of Computed and Measured Aerodynamic Characteristics of a Proposed Aeroassist Flight Experiment Configuration. AIAA Pap. No. 86–1366, also NASA TM 89034.

    Google Scholar 

  • Wells, William L. 1987. Wind-Tunnel Preflight Test Program for Aeroassist Flight Experiment. Technical Papers-AIAA Atmospheric Flight Mechanics Conference, pp. 151–163.

    Google Scholar 

  • Wells, William L. 1988. Free-Shear-Layer Turning Angle in Wake of AFE Vehicle at Incidence in M = 10 Air and M = 6 CF4. NASA TM 100479.

    Google Scholar 

  • Wells, William L. 1989. Measured and Predicted Aerodynamic Heating on a Cylinder in Wake of AFE Configuration at Incidence. AIAA Pap. No. 89–2162.

    Google Scholar 

  • Wells, William L., and Franks, A. M. 1988. Measured and Predicted Shock Shapes for AFE Configuration at Mach 6 in Air and in CF4. NASA TM 100660.

    Google Scholar 

  • Wells, William L. 1990. Measured and Predicted Coefficients and Shock Shapes for Aeroassist Flight Experiment (AFE) Configuration. NASA TP 2956.

    Google Scholar 

  • Wells, William L. 1990. Surface Flow and Heating Distributions on a Cylinder in Near Wake of Aeroassist Flight Experiment (AFE) Configuration at Incidence in Mach 10 Air. NASA TP 2954.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miller, C.G., Wells, W.L. (1992). Wind-Tunnel Based Definition of the AFE Aerothermodynamic Environment. In: Bertin, J.J., Periaux, J., Ballmann, J. (eds) Advances in Hypersonics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0379-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0379-7_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6734-8

  • Online ISBN: 978-1-4612-0379-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics