Skip to main content

Numerical Simulation of Three-Dimensional Hypersonic Viscous Flows

  • Chapter

Abstract

Numerical approaches to simulate viscous hypersonic flows in the continuum- as well as in the gaskinetic-flow regimes are discussed with emphasis on three-dimensional flows. The ideal-gas continuum flow is simulated with an explicit/implicit finite-difference method for the thin-layer approximation of the time-dependent Navier-Stokes equations. In two dimensions real-gas effects are implemented using curve-fitting routines for the air properties in chemical equilibrium. Gaskinetic flows are considered based on the direct simulation Monte Carlo approach for the solution of the Boltzmann equation. Real-gas effects are included via an extended Borgnakke-Larsen model in two dimensions. In all approaches the major problem is the lack of appropriate experiments for code validation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koppenwallner, G.: Rarefied Gas Dynamics. Notes, 1st Joint Europe-US Short Course on Hypersonics. ESA, Paris, Dec.7-11. 1987.

    Google Scholar 

  2. Arrington, J.P.; Jones, J.J. (Eds.): Shuttle Performance: Lessons learned. Part land 11. NASA CP 2283, 1983.

    Google Scholar 

  3. Peterson, V.L.; Bailey, F.R.: Close to Real Life. Aerospace America, 18–24, July 1988.

    Google Scholar 

  4. Wake, A.J.: Hypersonic Aerodynamics-Applications for HOTOL. AGARD CP-428, Paper 34, 1987.

    Google Scholar 

  5. Koelle, D.E. and Kuczera, H.: Sänger Space Transportation System-Status Report 1988. Paper IAF-88-192, Oct. 1988.

    Google Scholar 

  6. Dwoyer, D.L.; Kutler, P.; Povinelli, L.A.: Retooling CFD for Hypersonic Aircraft. Aerospace America, 32–35, 41, Oct. 1987.

    Google Scholar 

  7. Davis, N.W.: Japan Takes Charge. Aerospace America, 22–26, March 1988.

    Google Scholar 

  8. Dwoyer, D.L.; Kumar, A.: Computational Analysis of Hypersonic Airbreathing Aircraft Flow Fields. AIAA Paper 87-0279, 1987.

    Google Scholar 

  9. Kumar, A.: CFD for Hypersonic Airbreathing Aircraft. Proceedings of the 11th ICNMFD in Williamsburg, USA, June 27-July 1, 1988.

    Google Scholar 

  10. Bogdonoff, S.M.: Technical Evaluation Report on the Fluid Dynamics Panel Symposium on Aerodynamics of Hypersonic Lifting Vehicles. AGARD AR 246, 1988.

    Google Scholar 

  11. Kordulla, W.: Computational Techniques for Hypersonic Flows-Selected recently applied techniques. AGARD R 761, to be published in 1989.

    Google Scholar 

  12. —: Notes, 1st Joint Europe/US Short Course in Hypersonics. ESA, Paris, December7-11,1987.

    Google Scholar 

  13. Koppenwallner, G.: Fundamentals of Hypersonics: Aerodynamics and Heat Transfer. Notes, VKI-LS “Hypersonic Aerothermodynamics”. Brussels, 1984.

    Google Scholar 

  14. Hirschei, E.H.: Aerothermodynamische Probleme bei Hyperschallfluggeräten. Jahrestagung der DGLR, München, 9.110.10.1986 (see also MBB S/PUB/270).

    Google Scholar 

  15. Sarma, G.S.R.: So me Problems of Continuing Interest in Hypersonics. DFVLR IB 221-88 A 08, 1988.

    Google Scholar 

  16. Griffith, B.J.; Maus, J.R.; Majors, B.M.; Best, J.T.: Addressing the Hypersonic Simulation Problem, Journal of Spacecraft and Rockets 24, 334–341, 1987.

    Article  Google Scholar 

  17. Bertin, J.J.: General Characterization of Hypersonic Flows, in [12].

    Google Scholar 

  18. Scott, C.D.: The effects of Thermochemistry, Nonequilibrium and Surface Catalysis in the Design of Hypersonic Vehicles, in [12].

    Google Scholar 

  19. Bird, G.A.: Molecular Gas Dynamics. Oxford University Press. 1976.

    Google Scholar 

  20. Moss, J.N.; Bird, G.A.: Monte-Carlo Simulations in Support of the Shuttle Upper Atmosphere Mass Spectrometer Experiment. AIAA Journal of Thermophysics 2,138–144,1988.

    Article  Google Scholar 

  21. Bird, G.A.: Nonequilibrium Radiation During Re-Entry at 10 km/s. AIAA Paper 87-1543,1987.

    Google Scholar 

  22. Meiburg, E.: Direct simulation teehnique for the Boltzmann equation. DFVLR-FB 85-13, 1985.

    Google Scholar 

  23. Wetzei, W.; Oertel, H.: Direct Monte Carlo Simulation of Hypersonie Flows Past Blunt Bodies. Proceedings, 16th Int. Symp. on Rarefied Gas Dynamics, Pasadena, 1988.

    Google Scholar 

  24. Wetzei, W.; Oertel, H.: Gaskinetical Simulation of Vorlieal Flows. Acta Mechanica 70, 127–143, 1987.

    Article  Google Scholar 

  25. Bird, G.A.: Monte Carlo Simulation of Gas Flows. Annual Review of Fluid Mechanics, Vol. 10, Annual Reviews Ine., Palo Alto, Cal., USA, 11–32, 1978.

    Google Scholar 

  26. Bird, G.A.: Low Density Aerothermodynamics. AIAA Paper 85-0994, 1985.

    Google Scholar 

  27. Chapman, S.; Cowling. T.G.: The Malhematical Theory of Non-Uniform Gases. Cambridge University Press, 1970.

    Google Scholar 

  28. Hirschfelder, J.O.; Curtiss, C.F.; Bird, R.B.: Molecular Theory of Gases and Liquids. John Wiley and Sons, New York, 1954.

    Google Scholar 

  29. Vincenti, W.G.; Krüger, C.H.: Introduclion to Physieal Gas Dynamics. John Wiley and Sons, New York, 1965.

    Google Scholar 

  30. J.De Meis, R.: Wind Tunnels battle the Number-Cruncher. Aerospace America, 42–46, August 1986.

    Google Scholar 

  31. Stalker, R.J.: Shock Tunnels for Real Gas Hypersonics. AGARD CP-428, Paper 4, 1987.

    Google Scholar 

  32. Hornung, H.G.: Laboratory Simulation of the Real Gas Effects of Reentry. ESA SP-265, 13–19, August 1986.

    Google Scholar 

  33. Sharma, S.P.; Park, C.: A Survey of Simulation and Diagnostie Techniques for Hypersonic Nonequilibrium Flows. AIAA Paper 87-0406,1987.

    Google Scholar 

  34. Sutton, K.; Zoby, E.V.; Hamilton, H.H.: Overview of CFD Methods and Comparisons with Flight Aerothermal Dala. AGARD CP-437, 1988.

    Google Scholar 

  35. Deiwerl, G.S.; Strawa, A.W.; Sharma, S.P.; Park, C.: Experimental Program for Real Gas Flow Code Validation at NASA Ames Research Center. AGARD CP-437, Paper 21,1988.

    Google Scholar 

  36. Dunn, M.G.; Moller, J.C.; Steele, R.C.: Development of a New High-Enthalpy Shock Tunnel. AIAA Paper 88-2782, 1988.

    Google Scholar 

  37. Hornung, H.G.: Results obtained in a Facility for High Enthalpy Nonequilibrium Gas Dynamics. AIAA Paper 88-2783, 1988.

    Google Scholar 

  38. Strawa, A.W.; Prabhu, D.K.: A Comparison of Experimental and Computational Results for 5 and 10 Degree Cones at High Mach Numbers. AIAA Paper 88-2705, 1988.

    Google Scholar 

  39. Hanson, R.K.; Chang, A.Y.; Davidson, D.F.: Modern Shoek Tube Methods for Chemical Studies in High Temperature Gases. AIAA Paper 88-2712, 1988.

    Google Scholar 

  40. Srinivasan, G.R.; Nicolet, W.E.; Shanks, S.P.: Viscous Hypersonic Flow Over Complex Bodies at High Angle of Attaek. AIAA Paper 84-0015, 1984.

    Google Scholar 

  41. Shang, J.S.; Scherr, S.T.: Navier-Stokes Solution of Flow Field Around a Complete Aircraft. AIAA Paper 85-1509-CP, 1985.

    Google Scholar 

  42. Chaussee, D.S.: High-Speed Viscous Flow Calculation about Complex Configurations. AGARD CP-412, Paper 29, 1986.

    Google Scholar 

  43. Candler, G.V.; MacCormack, R.W.: Hypersonic Flow Past 3-D Configurations. AIAA Paper 87-0480,1987.

    Google Scholar 

  44. Chaussee, D.S.: NASA Ames Research Center’s Parabolized Navier-Stokes Code: A Critical Evaluation of Heat-Transfer Predidions. AIAA Paper 87-1474, 1987.

    Google Scholar 

  45. Yamamoto, Y.: Numerical Simulation of Hypersonic Flow Around aSpace Plane. AIAA Paper 88-2615,1988.

    Google Scholar 

  46. Beam, R.M.; Warming, R.F.: An Implicit Factored Scheme for the Compressible Navier-Stokes Equations. AIAA Journal 16,393–402, 1978.

    Article  Google Scholar 

  47. Rizk, Y.M.; Chaussee, D.S.: Three-Dimensional Viscous-Flow Computation Using a Directionally Hybrid Implicit-Explicit Procedure. AIAA Paper 83-1910-CP, 1983.

    Google Scholar 

  48. Müller, B.: Vectorization of the Implicit Beam and Warming Scheme, in: Gentzsch, W.: “Vectorization of Computer Programs with Applications to Computational Fluid Dynamics”. Vieweg Verlag, Braunschweig, 172–174, 1984.

    Google Scholar 

  49. Müller, B.: Berechnung abgelöster laminarer Überschallströmungen um nichtangestellte stumpfe Rotationskörper. DFVLR-FB 85-30, 1985, also dissertation RWTH Aachen, 1985. English translation: ESA-TT-953, 1985.

    Google Scholar 

  50. Müller, S.: Navier-Stokes Solution for Hypersonic Flow Over an Indented Nosetip. AIAA Paper 85-1504-CP, 1985.

    Google Scholar 

  51. Müller, B.; Rues, D.: Implicit Finite-Difference Simulation of Separated Hypersonic Flow Over an Indented Nosetip. Notes on Numerical Fluid Mechanics 13, Vieweg Verlag, 271–278, 1986.

    Google Scholar 

  52. Müller, B.; Rues, D.: Finite-Difference Method for the Simulation of Three Dimensional Laminar Supersonic Flow over Blunt Bodies. DFVLR-IB 221-86 A 03, 1986.

    Google Scholar 

  53. Müller, B.: Semi-Implicit Finite-Difference Simulation of Separated Laminar Transonic Flow over a Hemisphere-Cylinder at Incidence. DFVLR-IB 221-88 A 17, 1988.

    Google Scholar 

  54. Riedelbauch, S.; Wetzei, W.; Kordulla, W.; Oertel, H.: On the Numerical Simulation of Three-Dimensional Hypersonic Flow. AGARD-CP 428, Paper 19,1987.

    Google Scholar 

  55. Riedelbauch, S.; Müller, B.: The Simulation of Three-Dimensional Viscous Supersonic Flow Past Blunt Bodies with a Hybrid ImplicitfExplicit FiniteDifference Method, DFVLR-FB 87-32. 1987.

    Google Scholar 

  56. Riedelbauch, S.: Müller, B.; Kordulla, W.: Semi-Implicit Finite-Difference Simulation of Laminar Hypersonic Flow over Blunt Bodies. Proceedings, 11th ICNMFD, Williamsburg, Virginia, June 27-July 1, 1988. To appear in Springer Verlag.

    Google Scholar 

  57. Riedelbauch, S.: Simulation of 3-D Laminar Supersonic/Hypersonic Flow Past Blunt Bodies. DFVLR-IB 221-88 A 16, 1988.

    Google Scholar 

  58. Riedelbauch, S.; Müller, B.: Numerische Simulation laminarer Hyperschall Strömungen um Ellipsoide. Proceedings, 6. DGLR-STAB Symposium, Braunschweig, 8.-10.11.1988.

    Google Scholar 

  59. Müller, B.: Simple Improvements of an Upwind TVD Scheme for Hypersonic Flow. To be published in 1989.

    Google Scholar 

  60. Baldwin, B.S.; Lomax, H.: Thin-Layer Approximation and Aigebraic Model for Separated Turbulent Flows. AIAA Paper 78-0257,1976.

    Google Scholar 

  61. Riedelbauch, S.; Brenner, G.; Müller, B.; Kordulla, W.: Numerical Simulation of Laminar Hypersonic Flow Past a Double-Ellipsoid. To be published in 1989.

    Google Scholar 

  62. Srinivasan, S.; Tannehill, J.C.; Weilmuenster, K.J.: Simplified Curve-Fits for the Transport-Properties of Equilibrium Air. Final Report. NASA CR 180422, 1987.

    Google Scholar 

  63. Peng, T.L.; Pindroh, A.L.: An Improved Calculation of Gas Properties at High Temperature Air. 02-11722, The Boeing Company, 1962.

    Google Scholar 

  64. Srinivasan, S.; Tannehilk, J.C.; Weilmuesnter, K.J.: Simplified Curve-Fits for the Thermodynamic Properties of Equilibrium Air. NASA Reference Publications 1181, 1987.

    Google Scholar 

  65. Hansen, F.: Approximations for the Thermodynamie and Transport Properties of High-Temperature Air. NASA TR R-50, 1959.

    Google Scholar 

  66. Thomas, P.D.; Lombard, C.K.: Geometric Conservation Law and its Application to Flow Compulations on Moving Grids. AIAA Journal 17, 1030–1037, 1979.

    Article  Google Scholar 

  67. Kutler, P.; Pedelty, J.A.; Pulliam, T.H.: Supersonic Flow over Three-Dimensional Ablated Nosetips Using an Unsteady Implicit Numerical Procedure. AIAA Paper 80-0063, 1980.

    Google Scholar 

  68. Pfitzner, M.; Weiland, C.: 3-D Euler Solution for Hypersonic Maeh Numbers. AGARD CP-428, 1987.

    Google Scholar 

  69. Vinokur, M.: On One-Dimensional Stretching Functions for Finite-Difference Calculations. Journal of Comp. Physics 50, 215–234, 1983.

    Article  Google Scholar 

  70. Cleary, J.W.: An Experimental and Theoretieal Investigation of Ihe Pressure Distribution and Flow Fields of Blunted Cones at Hypersonic Mach Numbers. NASA TN 0-2929, 1965.

    Google Scholar 

  71. Cleary, J.W.: Effects of Angle of Attack and Sluntness on Laminar HeatingRate Distributions of a 15°-Cone at a Mach Number of 10.6. NASA TN D-5450, 1969.

    Google Scholar 

  72. Seckwith, I.E.; Gallagher, J.J.: Heat Transfer and Recovery Temperatures on a Sphere with Laminar Transitianal and Turbulent Soundary Layers at Mach numbers of 2 and 4.15. NACAs TN 4125, 1957.

    Google Scholar 

  73. Da Costa, J.L.; Aymer de la Chevalerie, D.; Alziary de Roquefort, T.: Ecoulement Tridimensional Hypersonique sur une Combinaison d'Ellipsoides. CEAT, Rapport No. 4 RDMF 86, Université de Poitiers, Juillet 1987.

    Google Scholar 

  74. Schwane, R.; Hänel, D.: Computation of Viscous Supersonic Flow Around Slunt Sodies. Notes on Numerical Fluid Mechanics 20,379–386, 1988.

    Google Scholar 

  75. Hänel, D.; Schwane, R.: An Implicit Flux-Vector Splitting Scheme for the Computation of Viscous Hypersonic Flow, AIAA Paper 89-0274, 1989.

    Google Scholar 

  76. Yee, H.C.: Upwind and Symmetrie Shock-Capturing Schemes. NASA TM 89464,1987.

    Google Scholar 

  77. Bhutta, B.A.; Lewis, C.H.: Three-Dimensional Hypersonic Non-Equilibrium Flows at Large Angles of Attack. AIAA Paper 88-2568-CP, 1988.

    Google Scholar 

  78. Reddy, K.V.; Fujiwara, R.; Ogawa, T.; Arashi, K.: Computation of Three-Dimensional Chemically Reacting Viscous Flow Around Rocket Body. AIAA Paper 88-2616, 1988.

    Google Scholar 

  79. Lee, J.-H.: Basic Governing Equations for the Flight Regimes of Aeroassisted Orbital Transfer Vehicles. Progress in Astronautics and Aeronautics, Vol. 96,3–53, 1985 (s. also AIAA Paper 84-1729, 1984).

    Google Scholar 

  80. Warnatz, J.: Air Dissociation, Thermochemistry and Problems Resulting from the Coupling of Flow and Chemistry. in [12].

    Google Scholar 

  81. Schönauer, W.; Spreuer, H.; Straub, D.; Adams, E.: Die numerische Lösung der stationären Hyperschall-Grenzschichtgleichungen unter der Voraussetzung thermochemischen Gleichgewichts. DFVLR-FB 73-68, 1973.

    Google Scholar 

  82. Glotz, G.; Schönauer, W.; Däubler, H.-G.; Grüning, J.: Aufstellung eines Rechenprogramms zur Lösung der Laminaren HyperschallGrenzschichtgleichungen bei chemischem Nichtgleichgewicht. Rechenzentrum, Univ. Karlsruhe, IB Nr. 5/75, 1975.

    Google Scholar 

  83. Penner, S.S.: Introduction to Ihe Study of Chemical Reactions in Flow Systems. Pergamon Press Book, 1957.

    Google Scholar 

  84. Aupoix, S.: An Introduction to Real Gas Effects. AGARD R 761, 10 be published in 1989.

    Google Scholar 

  85. Yu, S.-T.; McBride, B.J.; HSieh, K.-C.; Shuen, J.-S.: Numerical Simulation of Hypersonic Inlet Flows with Equilibrium or Finite Rate Chemistry. AIAA Paper 88-0273, 1988.

    Google Scholar 

  86. Feiereisen, W.J.; Venkatapathy, E.: Computations of Ideal and Real Gas High Altitude Plume Flows. AIAA 88-2636, 1988.

    Google Scholar 

  87. Gordon, S.; McBride, B.J.: Computer Program for Calculation of Complex Chemical Equilibrium Compositions. Rocket Perlormance, Incident and Reflected Shocks and Chapman-Jouguet Detonations. NASA Sp-273, 1976.

    Google Scholar 

  88. Wilson, G.J.; Davis, W.H.: Hypersonic Forebody Perlormance Sensitivities Based on 3-D Equilibrium Navier-Stokes Calculations. AIAA Paper 88-0370, 1988.

    Google Scholar 

  89. ota, D.K.; Chakravarthy, S.R.; Darling, J.C.: An Equilibrium Air NavierStokes Code for Hypersonic Flows. AIAA Paper 88-0419, 1988.

    Google Scholar 

  90. Vigneron, Y.C.: Hypersonic viscous flow of equilibrium air around a blunt body. Ph.D. thesis, lowa State University, Ames, lowa, 1976.

    Google Scholar 

  91. Brun, R.: Transport Properties in Reactive Gas Flows. AIAA Paper 88-2655, 1988.

    Google Scholar 

  92. Bird, G.A.: Direct Simulation and the Boltzmann Equation. The Physics of Fluids, Vol. 11, 2676–2681, 1970.

    Article  Google Scholar 

  93. Bird, G.A.:Rarefied Hypersonic Flow Past aSIender Sharp Cone, Proceedings, 13th Rarefied Gas Dynamics Conference (1982), Vol. 1, Plenum Press, New York, 349–356, 1985.

    Google Scholar 

  94. Bird, G.A.: Thermal and Pressure Diffusion Effects in High Altitude Flows. AIAA Paper 88-2732, 1988.

    Google Scholar 

  95. Moss, J.N.; Bird, G.A.: Direct Simulation of Transilional Flow for Hypersonic Reentry Conditions. AIAA Paper 84-0223, 1984.

    Google Scholar 

  96. Moss, J.N.: Direct Simulation of Hypersonic Transitional Flow. Proceedings, 15th Int. Symposium on Rarefied Gas Dynamics, Grado, Italy, June 16-20, 1986.

    Google Scholar 

  97. Dogra, V.K.; Moss, J.N.; Simmonds, A.L.: Direct Simulation of Stagnation Streamline Flow for Hypersonic Reentry. AIAA Paper 87-0405,1987.

    Google Scholar 

  98. Moss, J.N.; Cuda Jr., V.; Simmonds, A.L.: Nonequilibrium Effects for Hypersonic Transitional Flows. AIAA Paper 87-0404, 1987.

    Google Scholar 

  99. Nanbu, K.: Interrelations between Various Direct Simulation Methods for Solving the Boltzmann equation. Journal of the Physical Society of Japan, Vol. 52, 3382–3388, 1983.

    Article  Google Scholar 

  100. Boyd, I.D.; Stark, J.P.W.: A Comparison of the Implementation and Performance of the Nanbu and Bird Direct Simulation Monte Carlo Methods. Dept. of Aeronautics and Astronaulics, University of Southampton, Sept. 1987.

    Google Scholar 

  101. Neunzert, H.: New Simulation Methods for Hypersonic Boltzmann Flows. Notes, 2nd Joint Europe/US Short Course in Hypersonics, Colorado Springs, Colorado. 16-20 January 1989.

    Google Scholar 

  102. Nanbu, K.: Theoretical Basis of the Direct Simulation Monte Carlo Method. 15th Symposium RGD, Grado, June 16-20, 1986.

    Google Scholar 

  103. Alder, B.J.; Wainwright, T.E.: Molecular dynamics by electronic computers. Proceedings, Transport Processes in Statistical Mechanics, ed. I. Prigogine, Interscience Publisher, New York, 97–131, 1958.

    Google Scholar 

  104. Bird, G.A.: Monte Carlo Simulation in an Engineering Context. AIAA Progress in Astronautics and Aeronautics: Rarefied Gas Dynamics, Vol. 74, 239–255, 1981.

    Google Scholar 

  105. Bird, G.A.: Simulation of Multi-Dimensional and Chemically Reacting Flows. 11th Symposium RGD, Cannes, July 3-8, 1978.

    Google Scholar 

  106. Bird, G.A.: Direct Molecular Simulation of a Dissociating Diatomic Gas. J. Comput. Phys. 25, 353,1977.

    Article  Google Scholar 

  107. Borgnakke, C.; Larsen, P.S.: Statistical Collision Model for Monte Carlo Simulation of Polyatomic Gas Mixtures. Journal of Comp. Physics, Vol. 18, 405–420, 1975.

    Article  Google Scholar 

  108. Crawford, D.R.; Vogenitz, F.W.: Monte Carlo Simulations for the Shock Layer Structure on an Adiabatic Cylinder in Rarefied Supersonic Flow. in: Rarefied Gas Dynamics, DFVLR Press, Porz-Wahn, 1974.

    Google Scholar 

  109. Koppenwallner, G.: Experimentelle Untersuchung der Druckverteilung und des Widerstands von querangeströmten Kreiszylindern bei hypersonischen Machzahlen im Bereich von Kontinuums-bis freier Molekularströmung. ZFW, Vol. 17,321–332,1969.

    Google Scholar 

  110. Russell, D.A.: Density Disturbance ahead of a Sphere in Rarefied Supersonic Flow. The Physics of Fluids, Vol. 11, 1679–1685, 1986.

    Article  Google Scholar 

  111. Legge, H.: Dankert, C.: Experimental Studies of Thermal Accommodation Coefficients on Heat Transfer. DFVLR 18 222-88 A 38, 1988.

    Google Scholar 

  112. Lighthill, U.J.: Dynamics of a Dissociating Gas. Part I. Equilibrium Flow, J. Fluid Mechanics, Vol. 2, 1957.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kordulla, W., Müller, B., Riedelbauch, S., Wetzel, W., Brenner, G. (1992). Numerical Simulation of Three-Dimensional Hypersonic Viscous Flows. In: Bertin, J.J., Periaux, J., Ballmann, J. (eds) Advances in Hypersonics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0375-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0375-9_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6732-4

  • Online ISBN: 978-1-4612-0375-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics