Skip to main content

Infinitely Divisible Random Measures and Superprocesses

  • Chapter

Part of the book series: Progress in Probability ((PRPR,volume 31))

Abstract

The objective of these lectures is to serve as an introduction to the theory of measure-valued branching processes or super processes.This class of processes first arose from the study of continuous state branching in the work of Jirina (1958, 1964) and (1968). It was also linked to the study of stochastic evolution equations in (1975). In this introduction we look at two roots of this subject, namely, spatially distributed birth and death particle systems and stochastic partial differential equations with non-negative solutions. In Section 2 we carry out some exploratory calculations concerning the continuous limit of branching particle systems and their relation to stochastic partial differential equations. In addition, we introduce the ideas of local spatial clumping with a set of informal calculations that lead to the prediction that the continuum limit of branching particle systems in dimensions d≥3 will lead to infinitely divisible random measures which are almost surely singular.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Aldous (1978). Stopping times and tightness, Ann. Probab. 6, 335–340.

    Article  MathSciNet  MATH  Google Scholar 

  2. K.B. Athreya and P.E. Ney (1977). Branching Processes, Springer-Verlag.

    Google Scholar 

  3. C. Berg, J.P.R. Christensen and P. Ressel (1984). Harmonic Analysis on Semigroups, Springer-Verlag.

    Google Scholar 

  4. R.M. Blumenthal and R.K. Getoor (1968). Markov Processes and Potential Theory, Academic Press, New York.

    MATH  Google Scholar 

  5. D.L. Cohn (1980). Measure Theory, Birkhäuser.

    Google Scholar 

  6. C. Cutler (1984). Some measure-theoretic and topological results for measure-valued and set-valued stochastic processes, Ph.D. Thesis, Carleton University.

    Google Scholar 

  7. D.A. Dawson (1972). Stochastic evolution equations, Math. Biosciences 15, 287–316.

    Article  MATH  Google Scholar 

  8. D.A. Dawson (1975). Stochastic evolution equations and related measure-valued processes, J. Multivariate Analysis 5, 1–52.

    Article  MATH  Google Scholar 

  9. D.A. Dawson (1977). The critical measure diffusion, Z. Wahr, verw Geb. 40, 125–145.

    Article  MATH  Google Scholar 

  10. D.A. Dawson (1978). Limit theorems for interaction free geostochastic systems, Colloquia Math. Soc. J. Bolyai, 24, 27–47.

    Google Scholar 

  11. D.A. Dawson and B.G. Ivanoff (1978). Branching diffusions and random measures. In Stochastic Processes, ed. A. Joffe and P. Ney, 61–104, Dekker, New York.

    Google Scholar 

  12. D.A. Dawson and K.J. Hochberg (1979). The carrying dimension of a stochastic measure diffusion, Ann. Prob. 7, 693–703.

    Article  MathSciNet  MATH  Google Scholar 

  13. D.A. Dawson (1986). Measure-valued stochastic processes: construction, qualitative behavior and stochastic geometry, Proc. Workshop on Spatial Stochastic Models, Lecture Notes in Mathematics 1212, 69–93, Springer-Verlag.

    Google Scholar 

  14. D.A. Dawson, K. Fleischmann, R.D. Foley and L.A. Pe-letier (1986). A critical measure-valued branching process with infinite mean, Stoch. Anal. Appl. 4, 117–129.

    Article  MathSciNet  MATH  Google Scholar 

  15. D.A. Dawson and K. Fleischmann (1988). Strong clumping of critical space-time branching models in subcriticai dimensionas, Stoch. Proc. Appl. 30, 193–208.

    Article  MathSciNet  MATH  Google Scholar 

  16. D.A. Dawson, I. Iscoe and E.A. Perkins (1989). Super-Brownian motion: path properties and hitting probabilities, Probab. Th. Rel. Fields 83, 135–205.

    Article  MathSciNet  MATH  Google Scholar 

  17. D.A. Dawson and E.A. Perkins (1991). Historical processes, Memoirs of the American Mathematical Society, 454.

    Google Scholar 

  18. D.A. Dawson, K. Fleischmann and S. Roelly (1991). Absolute continuity of the measure states in a branching model with catalysts, Seminar on Stochastic Processes 1990, Birkhäuser, 117–160.

    Google Scholar 

  19. D.A. Dawson (1992). Measure-valued Markov processes, in P.L. Hennequin (ed.), Ecole d’Eté de Probabilités de Saint-Flour 1991, to appear.

    Google Scholar 

  20. C. Dellacherie and P.A. Meyer (1975). Probabilités et potentiel, Hermann.

    Google Scholar 

  21. A. De Masi and E. Presutti (1989). Lectures on the collective behavior of particle systems, CARR Reports in Mathematical Physics.

    Google Scholar 

  22. E.B. Dynkin (1965). Markov Processes, I,II, Springer-Verlag.

    Google Scholar 

  23. E.B. Dynkin, (1988). Representation for functionals of superprocesses by multiple stochastic integrals, with applications to self intersection local times, Astérisque 157–158, 147–171.

    MathSciNet  Google Scholar 

  24. E.B. Dynkin, (1989a). Superprocesses and their linear additive functionals, Trans. Amer. Math. Soc., 314, 255–282.

    Article  MathSciNet  MATH  Google Scholar 

  25. E.B. Dynkin, (1989b). Regular transition functions and regular superprocesses, Trans. Amer. Math. Soc, 316, 623–634.

    Article  MathSciNet  MATH  Google Scholar 

  26. E.B. Dynkin, (1989c). Three classes of infinite dimensional diffusions, J. Funct. Anal. 86, 75–110.

    Article  MathSciNet  MATH  Google Scholar 

  27. E.B. Dynkin (1990). Path processes and historical superprocesses, Probab. Th. Rel. Fields 90, 89–115.

    Google Scholar 

  28. E.B. Dynkin, (1991). Branching particle systems and superprocesses, Annals Probab. 19, 1157–1194.

    Article  MathSciNet  MATH  Google Scholar 

  29. N. El Karoui (1985). Non-linear evolution equations and functionals of measure-valued branching processes. In Stochastic Differential Systems, ed. M. Metivier and E. Pardoux, Lect. Notes Control and Inf. Sci. 69, 25–34., Springer-Verlag.

    Google Scholar 

  30. N. El Karoui and S. Roelly (1991). Proprietes de martingales, explosion et representation de Lévy-Khin-chine d’une classe de processus de branchement à valeurs mesures, Stoch. Proc. Appl. 38, 239–266.

    Article  MATH  Google Scholar 

  31. S. N. Ethier and T.G. Kurtz (1986). Markov processes: characterization and convergence, Wiley.

    Google Scholar 

  32. S. Evans and E. Perkins (1991). Absolute continuity results for superprocesses with some applications, Trans. Amer. Math. Soc. 325, 661–681.

    Article  MathSciNet  MATH  Google Scholar 

  33. W. Feller (1951). Diffusion processes in genetics, Proc. Second Berkeley Symp., Univ. of Calif. Press, Berkeley, 227–246.

    Google Scholar 

  34. P.J. Fitzsimmons (1988). Construction and regularity of measure-valued branching processes, Israel J. Math. 464, 337–361.

    Article  MathSciNet  Google Scholar 

  35. P.J. Fitzsimmons (1989). Correction and addendum to Construction and regularity of measure-valued branching processes, Israel J. Math.

    Google Scholar 

  36. K. Fleischmann and J. Gärtner (1986). Occupation time process at a critical point, Math. Nachr. 125, 275–290.

    Article  MathSciNet  MATH  Google Scholar 

  37. K. Fleischmann (1988). Critical behavior of some measure-valued processes, Math. Nachr. 135, 131–147.

    Article  MathSciNet  MATH  Google Scholar 

  38. R.K. Getoor (1974). Markov processes: Ray processes and right processes, Lecture Notes in Math. 440, Springer-Verlag.

    Google Scholar 

  39. A. Gmira, L. Veron (1984). Large time behavior of the solutions of a semilinear parabolic equation in ℝN, J. Diff. Equations 53, 258–276.

    Article  MathSciNet  MATH  Google Scholar 

  40. L.G. Gorostiza and J.A. Lopez-Mimbela (1990). The multitype measure branching process, Adv. Appl. Prob. 22, 49–67.

    Article  MathSciNet  MATH  Google Scholar 

  41. L.G. Gorostiza and S. Roelly-Coppoletta (1990) Some properties of the multitype measure branching process, Stoch. Proc. Appl. 37, 259–274.

    Article  Google Scholar 

  42. L.G. Gorostiza and Wakolbinger (1991). Persistence criteria for a class of critical branching particle systems in continuous time, Ann. Probab. 19, 266–288.

    Article  MathSciNet  MATH  Google Scholar 

  43. T.E. Harris (1963). The Theory of Branching Processes, Springer-Verlag.

    Google Scholar 

  44. R.A. Holley and D.W. Stroock (1978). Generalized Orns-tein-Uhlenbeck processes and infinite particle branching Brownian motion, Publ. R.I.M.S. Kyoto Univ. 14, 741–788.

    MathSciNet  MATH  Google Scholar 

  45. N. Ikeda, M. Nagasawa and S. Watanabe (1968), (1969). Branching Markov processes I, II, III, J. Math. Kyoto Univ. 8, 233–278, 9, 95–160.

    MathSciNet  MATH  Google Scholar 

  46. I. Iscoe (1980). The man-hour process associated with measure-valued branching random motions in ∝, Ph.D. thesis, Carleton University.

    Google Scholar 

  47. I. Iscoe (1986). A weighted occupation time for a class of measure-valued critical branching Brownian motion, Probab. Th. Rel. Fields 71, 85–116.

    Article  MathSciNet  MATH  Google Scholar 

  48. I. Iscoe (1988). On the supports of measure-valued critical branching Brownian motion, Ann. Prob. 16, 200–221.

    Article  MathSciNet  MATH  Google Scholar 

  49. K. Iwata (1987). An infinite dimensional stochastic differential equation with state space C(∝), Prob. Th. Rel. Fields 74, 141–159.

    Article  MathSciNet  Google Scholar 

  50. P. Jagers (1974). Aspects of random measures and point processes. In Advances in Probability, P. Ney and S. Port, eds., M. Dekker, 179–238.

    Google Scholar 

  51. A. Jakubowski (1986). On the Skorohod topology, Ann. Inst. H. Poincaré B22, 263–285.

    MathSciNet  Google Scholar 

  52. M. Jirina (1958). Stochastic branching processes with continuous state space, Czechoslovak Math. J. 8., 292–313.

    MathSciNet  Google Scholar 

  53. M. Jirina (1964). Branching processes with measure-valued states, In. Trans. Third Prague Conf. on Inf. Th., 333–357.

    Google Scholar 

  54. A. Joffe and M. Métivier (1986). Weak convergence of sequences of semimartingales with applications to mul-titype branching processes, Adv. Appl. Prob. 18, 20–65

    Article  MATH  Google Scholar 

  55. O. Kallenberg (1983). Random measures, 3rd ed., Akademie Verlag and Academic Press.

    Google Scholar 

  56. K. Kawazu and S. Watanabe (1971). Branching processes with immigration and related limit theorems, Th. Prob. Appl. 26, 36–54.

    Article  Google Scholar 

  57. P. Kotelenez (199.) Existence, uniqueness and smooth-ness for a class of function valued stochastic partial differential equations, Stochastics and Stochastic Reports, to appear.

    Google Scholar 

  58. J. Lamperti (1967). Continuous state branching processes, Bull. Amer. Math. Soc. 73, 382–386.

    Article  MathSciNet  MATH  Google Scholar 

  59. T.-Y. Lee (1990) Some limit theorems for critical branching Bessel processes, and related semilinear differential equations, Prob. Th. Rel Fields 84, 505–520.

    Article  MATH  Google Scholar 

  60. J.F. Le Gall (1989). Marches aléatoires, mouvement brownien et processes de branchement, L.N.M. 1372, 258–274.

    Google Scholar 

  61. J.F. Le Gall (1989). Une construction de certains processus de Markov à valeurs mesures, C.R. Acad. Sci. Paris 308, Série I, 533–538.

    MATH  Google Scholar 

  62. J.F. Le Gall (1991). Brownian excursions, trees and measure-valued branching processes, Ann. Probab. 19, 1399–1439.

    Article  MathSciNet  MATH  Google Scholar 

  63. Y. Le Jan (1989). Limites projectives de processus de branchement markoviens, C.R. Acad. Sci Paris 309, Serie 1, 377–381.

    MATH  Google Scholar 

  64. A. Liemant, K. Matthes and A. Wakolbinger (1988). Equilibrium Distributions of Branching Processes, Akademie-Verlag and Academic Press.

    Google Scholar 

  65. J.A. López-Mimbela (1989). Teoremas limites para cam-pos aleatorios ramificados multipo, Doctoral thesis, CIEA, Mexico.

    Google Scholar 

  66. K. Matthes, J. Kerstan and J. Mecke (1978). Infinitely Divisible Point Processes, Wiley.

    Google Scholar 

  67. C. Mueller (1990). Limit results for two stochastic partial differential equations, Stochastics 37, 175–199.

    MathSciNet  Google Scholar 

  68. E.A. Perkins (1988). A space-time property of a class of measure-valued branching diffusions, Trans. Amer. Math. Soc., 305, 743–795.

    Article  MathSciNet  MATH  Google Scholar 

  69. E.A. Perkins, E.A. (1989). The Hausdorff measure of the closed support of super-Brownian motion, Ann. Inst. H. Poincaré 25, 205–224.

    MathSciNet  MATH  Google Scholar 

  70. E.A. Perkins, E.A. (1990). Polar sets and multiple points for super-Brownian motion, Lower bounds, Ann. Probab. 18, 453–491.

    Article  MathSciNet  MATH  Google Scholar 

  71. M. Reimers (1986). Hyper-finite methods for multidimensional stochastic processes, Ph.D. thesis, U.B.C.

    Google Scholar 

  72. M. Reimers (1987). Hyperfinite methods applied to the critical branching diffusion, Probab. Th. Rel. Fields 81, 11–27.

    Article  MathSciNet  Google Scholar 

  73. M. Reimers (1989). One dimensional stochastic partial differential equations and the branching measure diffusion, Probab. Th. Rel. Fields 81, 319–340.

    Article  MathSciNet  MATH  Google Scholar 

  74. C.A. Rogers and S.J. Taylor (1961). Functions continuous and singular with respect to a Hausdorff measure, Mathematika 8, 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  75. S. Roelly-Coppoletta (1986). A criterion of convergence of measure-valued processes: application to measure branching processes, Stochastics 17, 43–65.

    Article  MathSciNet  MATH  Google Scholar 

  76. S. Roelly and A. Rouault (1990). Construction et propriétés de martingales des branchements spatiaux interactifs, International Statistical Review 58, 2, 173–189.

    Article  MATH  Google Scholar 

  77. Yu. M. Rhyzhov and A.V. Skorohod (1970). Homogeneous branching processes with a finite number of types and continuously varying mass, Teo. Verojatnost. i Pri-menen. 15, 704–707.

    Google Scholar 

  78. S.A. Sawyer (1970) A formula for semigroups with an application to branching diffusion processes, T.A.M.S. 152, 1–38.

    Article  MathSciNet  MATH  Google Scholar 

  79. M.J. Sharpe (1988). General theory of Markov processes, Academic Press.

    Google Scholar 

  80. M.L. Silverstein (1969). Continuous state branching semigroups, Z. Wahr. verw. Geb. 14, 96–112.

    Article  MathSciNet  MATH  Google Scholar 

  81. D.W. Stroock and S.R.S. Varadhan (1979). Multidimensional diffusion processes, Springer-Verlag.

    Google Scholar 

  82. S. Sugitani (1989). Some properties for the measure-valued branching diffusion processes, J. Math. Soc. Japan 41, 437–462.

    Article  MathSciNet  MATH  Google Scholar 

  83. R. Tribe (1989). Path properties of superprocesses, Ph.D. Thesis, U.B.C.

    Google Scholar 

  84. R. Tribe (1991). The connected components of the closed support of super Brownian motion, Probab. Th. Rei. Fields 89, 75–87.

    Article  MathSciNet  MATH  Google Scholar 

  85. J.B. Walsh (1986). An introduction to stochastic partial differential equations, in P.L. Hennequin (ed.), Ecole d’Eté de Probabilités de Saint-Flour XIV-1984, L.N.M. 1180, 265–439.

    Google Scholar 

  86. S. Watanabe (1968). A limit theorem of branching processes and continuous state branching, J. Math. Kyoto Univ. 8, 141–167.

    MathSciNet  MATH  Google Scholar 

  87. S. Watanabe (1969). On two dimensional Markov processes with branching property, Trans. Amer. Math. Soc. 136, 447–466.

    Article  MathSciNet  MATH  Google Scholar 

  88. F.B. Weissler (1981). Existence and uniqueness of global solutions for a semilinear heat equations, Israel J. Math. 38, 29–40.

    Article  MathSciNet  MATH  Google Scholar 

  89. U. Zähle (1988a). Self-similar random measures I. Notion, carrying Hausdorff dimension and hyperbolic distribution, Probab. Th. Rel. Fields 80, 79–100.

    Article  MATH  Google Scholar 

  90. U. Zähle (1988b). The fractal character of localizable measure-valued processes III. Fractal carrying sets of branching diffusions, Math. Nachr. (138) 293–311.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dawson, D.A. (1992). Infinitely Divisible Random Measures and Superprocesses. In: Körezlioğlu, H., Üstünel, A.S. (eds) Stochastic Analysis and Related Topics. Progress in Probability, vol 31. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0373-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0373-5_1

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6731-7

  • Online ISBN: 978-1-4612-0373-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics