Skip to main content

Different Levels of Air Dissociation Chemistry and Its Coupling with Flow Models

  • Chapter
Advances in Hypersonics

Part of the book series: Progress in Scientific Computing ((PSC,volume 8/9))

Abstract

Three selected topics relevant for hypersonic problems shall be considered in this paper:

  1. Thermal chemistry of air dissociation on different levels: Thermodynamics and reaction kinetics of thermal air dissociation at high temperatures are now rather well known. Systematic sensitivity analysis leads to the conclusion that oxygen dissociation is the rate-limiting reaction.

  2. Non-thermal chemistry: Phenomena like vibrational relaxation lead to considerable complications. A mechanism is developed, taking into consideration vibrational-translational relaxation of nitrogen and oxygen molecules up to the dissociation limit. Results are presented and compared with that of a corresponding thermal mechanism.

  3. Coupling of flow and chemistry: Stiffness introduced by chemical reaction terms into the conservation equations demands for implicit solution procedures. The treatment of two-dimensional problems (Euler equations and Navier-Stokes equations) is described here to illustrate solution methods including detailed chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Warnatz, Survey of Rate Coefficients in the C/H/O System, Sandia Report SAND83-8606. Sandia National Laboratories, Livermore (1983).

    Google Scholar 

  2. J. Warnatz, in: W. C. Gardiner (ed.), Combustion Chemistry. Springer, New York (1984).

    Google Scholar 

  3. R. K. Hanson, S. Salimian, in: W. C. Gardiner (ed.), Combustion Chemistry. Springer, New York (1984).

    Google Scholar 

  4. J. O. Hirschfelder, 9th Symposium (International) on Combustion, p. 553. Academic Press, New York (1963).

    Google Scholar 

  5. K. H. Ebert, P. Deuflhard, W. Jäger (eds.), Modelling of Chemical Reaction Systems. Springer, Heidelberg/New York (1981).

    Google Scholar 

  6. J. Warnatz, W. Jager (eds.), Complex Chemical Reaction Systems: Mathematical Modelling and Simulation. Springer, Heidelberg/New York (1987).

    Google Scholar 

  7. D. R. Stull, H. Prophet, JANAF Thermochemical Tables. U. S. Department of Commerce, Washington D. C. (1971), and addenda.

    Google Scholar 

  8. A. Burcat, in: W. C. Gardiner (ed.), Combustion Chemistry. Springer, New York (1984).

    Google Scholar 

  9. B. J. McBride, to be published.

    Google Scholar 

  10. J. Troe, J. Chem. Phys. 87, 2773 (1987).

    Article  Google Scholar 

  11. T. R. A. Bussing, S. Eberhardt, Chemistry Associated with Hypersonic Vehicles. AIAA 22nd Thermophysics Conference, Honululu (1987).

    Google Scholar 

  12. M. H. Bortner, A Review of Rate Constants of Selected Reactions of Interest in Re-Entry Flow Fields in the Atmosphere, NBS Technical Note 484. U. S. Department of Commerce, Washington D. C. (1969).

    Google Scholar 

  13. ESA-HERMES Meeting on Reactive Flow. Kaiserslautern (1988).

    Google Scholar 

  14. J. Warnatz, Air Dissociation Thermochemistry and Problems Resulting from the Coupling of Flow and Chemistry. In J. J. Bertin, R.-Glowinski, J. Periaux (Eds.), Hypersonics, Volume I — Defining the Hypersonic Environment. Birkhauser, Boston (1989).

    Google Scholar 

  15. D. L. Baulch, D. D. Drysdale, D. G. Horne, Evaluated Kinetic Data for High Temperature Reactions, Vol. 2. Butterworths, London (1973)

    Google Scholar 

  16. K. Thielen, P. Roth, 21st Symposium (International) on Combustion, p. 685. The Combustion Institute, Pittsburgh (1985).

    Google Scholar 

  17. J. P. Monat, R. K. Hanson, C. H. Kruger, 17th Symposium (International) on Combustion, p. 543. The Combustion Institute, Pittsburgh (1979).

    Google Scholar 

  18. K. L. Wray, 10th Symposium (International) on Combustion, p. 523. The Combustion Institute, Pittsburgh (1965).

    Google Scholar 

  19. C. Park, AIAA Paper 85-0247, AIAA 23rd Aerospace Sciences Meeting, Reno, NV (1985).

    Google Scholar 

  20. K. L. Wray, J. D. Teare, J. Chem. Phys. 36, 2582 (1962).

    Article  Google Scholar 

  21. M. Caracotsios, W. E. Stewart, Computers & Chemical Engineering 4, 359 (1983).

    Google Scholar 

  22. J. R. Leis, M. A. Kramer, Computers & Chemical Engineering 9, 93 (1985)).

    Article  Google Scholar 

  23. P. Glarbourg, J. A. Miller, R. J. Kee, Combust. Flame 65, 177 (1986).

    Article  Google Scholar 

  24. U. Nowak, J. Warnatz, Proc. 11th International Colloquium on Dynamics of Explosions and Reactive Systems (1988), in press.

    Google Scholar 

  25. P. Deuflhard, E. Hairer, J. Zugck, One-Step and Extrapolation Methods for Differential/Algebraic Systems, Univ. Heidelberg, SFB 123: Tech. Rep. 318, (1985)

    Google Scholar 

  26. A. Lifshitz, J. Chem. Phys. 61, 2478 (1974).

    Article  Google Scholar 

  27. V. N. Kondratiev, E. E. Nikitin, Gas Phase Reactions. Springer, Berlin, Heidelberg, New York (1981).

    Book  Google Scholar 

  28. R. C. Millikan, D. R. White, J. Chem. Phys. 39, 3209 (1963).

    Article  Google Scholar 

  29. G. D. Billing, Nonequilibrium Vibrational Kinetics. In M. Capitelli (Ed.), Topics in Current Physics 39, Springer, Berlin, Heidelberg, New York (1986).

    Google Scholar 

  30. C. Park, Progr. in Astronautics and Aeronautics 96, 511 (1985).

    Google Scholar 

  31. Y. Zhu, X. Wu, J. Warnatz, Computation of Non-Equilibrium Gas Flow Past Blunt Bodies. Report No. 488, SFB 123, Universität Heidelberg (19SS). Submitted to Computers and Fluids.

    Google Scholar 

  32. R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena. Wiley, New York (1960).

    Google Scholar 

  33. J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids. Wiley, New York (1954).

    Google Scholar 

  34. R. J. Kee, J. Warnatz, J. A. Miller, A Fortran Program Computer Code for the Evaluation of Gas-Phase Viscosities, Conductivities, and Diffusion Coefficients. SANDIA Report SAND83-S209 (1983).

    Google Scholar 

  35. R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, J. A. Miller, A Fortran Computer Code for the Evaluation of Gas-Phase Multicomponent Transport Properties. SANDIA Report SAND86-8246 (19S6).

    Google Scholar 

  36. P. Deuflhard, E. Hairer, J. Zugck, Num. Math. 51, 501 (1987).

    Article  Google Scholar 

  37. P. Deuflhard, U. Nowak, Extrapolation Integrators for Quasilinear Implicit ODEs. In P. Deuflhard, B. Enquist (Eds.), Large Scale Scientific Computing, Progress in Scientific Computing, Vol. 7, p. 37. Birkhäuser (1987).

    Google Scholar 

  38. U. Maas, J. Warnatz, Impact of Computing in Science and Engineering 1, 394–420 (1989).

    Article  Google Scholar 

  39. U. Maas, J. Warnatz, Detatiled Numerical Simulation of H 2-O 2 Ignition in Two-Dimensional Geometries, Interdisziplinäres Zentrum für Wis-senschaftliches Rechnen der Universität Heidelberg, Technical Report 1 (1990). To be presented at ICDERS 1991, Nagoja.

    Google Scholar 

  40. F. N. Fritsch, R. E. Carlson, SIAM J. Numer. Anal. 17, 238 (1980).

    Article  Google Scholar 

  41. F. N. Fritsch, J. Butland, SIAM J. Sci. Stat. Comput. 5, 300 (1984).

    Article  Google Scholar 

  42. U. S. Standard Atmosphere (1976), U. S. Government Printing Office, Washington, D.C. 20402.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Warnatz, J., Riedel, U., Schmidt, R. (1992). Different Levels of Air Dissociation Chemistry and Its Coupling with Flow Models. In: Bertin, J.J., Periaux, J., Ballmann, J. (eds) Advances in Hypersonics. Progress in Scientific Computing, vol 8/9. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0371-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0371-1_3

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6730-0

  • Online ISBN: 978-1-4612-0371-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics