Skip to main content

Part of the book series: Progress in Probability ((PRPR,volume 30))

Abstract

Let (f n)n=0 be a martingale (understood either in the weak or strong sense) in a separable Banach space (X, ∥ ∥) with respect to an increasing sequence of σ-algebras \((A_{n})_{n=0}^{\infty}, f_{0}\equiv 0, d_{n}=f_{n}-f_{n-1}, n=1,2,..., d_{0}\equiv 0, f^{*}=sup{||f_{n}||:n=0,1,...}, d^{*} denotes similarly, s=(\sum_{n=1}^{\infty}E_{n-1}||d_{n}||^{2})^{1/2}\), where En-1 stands for E(∣A n-1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, G. (1962) Probability inequalities for the sum of independent random variables. J. Amer. Statist. Assoc. 57, 33–45.

    Article  MATH  Google Scholar 

  2. Hoeffding, W. (1963) Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58, 13–30.

    Article  MathSciNet  MATH  Google Scholar 

  3. Azuma, K. (1967) Weighted sums of certain dependent random variables. Tohôku Math. J. Ser.II, 19, 357–367.

    Article  MathSciNet  MATH  Google Scholar 

  4. Burkholder, D.L. (1973) Distribution function inequalities for martingales. Ann. Probab., 1, 19–42.

    Article  MathSciNet  MATH  Google Scholar 

  5. Pinelis, I.F. Estimates for moments of infinite-dimensional maltingales. Math. Notes, 27, 1980, 459–462.

    Article  MathSciNet  MATH  Google Scholar 

  6. Pinelis, I.F. and Utev, S.A. (1984) Estimates of the moments of sums of independent random variables. Theory Probab. Appl., 29, 574–577.

    Article  MathSciNet  Google Scholar 

  7. Johnson, W.B., Schechtman, G. and Zinn, J. (1985). Best constants in moment inequalities for linear combinations of independent and exchangeable random variables. Ann. Probab., 13, 234–253.

    Article  MathSciNet  MATH  Google Scholar 

  8. Kwapień, S. and Woyczyński, W.A. (1989) Tangent sequences of random variables: Basic inequalities and their applications. Proc. Conf. on Almost Everywhere Convergence in Probab. and Ergodic Theory (G. A. Edgar and L. Sucheston. eds.) 237–265. Academic, New York.

    Google Scholar 

  9. Pinelis, I.F. (1990) Inequalities for the distributions of sums of independent random vectors and their applications to the density estimation. Theory Probab. Appl., 35, 605–607.

    Article  MathSciNet  MATH  Google Scholar 

  10. Hitczenko, P. (1990). Best constants in martingale version of Rosenthal’s inequality. Ann. Probab., 18, 1656–1668.

    Article  MathSciNet  MATH  Google Scholar 

  11. Kallenberg, O., Sztencel, R. (1991) Some dimension-free features of vector-valued martingales. Probab. Th. Rel. Fields. 88, 215–247.

    Article  MathSciNet  MATH  Google Scholar 

  12. Hitczenko, P. (1991). Private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pinelis, I. (1992). An Approach to Inequalities for the Distributions of Infinite-Dimensional Martingales. In: Dudley, R.M., Hahn, M.G., Kuelbs, J. (eds) Probability in Banach Spaces, 8: Proceedings of the Eighth International Conference. Progress in Probability, vol 30. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0367-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0367-4_9

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6728-7

  • Online ISBN: 978-1-4612-0367-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics