Skip to main content

Part of the book series: Progress in Probability ((PRPR,volume 30))

  • 608 Accesses

Summary

For a probability measure P let P n be its empirical measures. The main result is that if there are constants C and γ such that for all P, all suitably measurable Vapnik-Cervonenkis classes C of index 1 containing the empty set and all M ≥ 1, we have

$$Pr(sup_{A\in C}n^{1/2}|(P_{n}-P)(A)|>M)\leq CM^{\gamma}exp(-2M^2), then\, \gamma\geq1$$

.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, R. J. (1990). An Introduction to Continuity, Extrema and Related Topics for General Gaussian Processes. IMS Lecture Note and Monograph Series 12.

    Google Scholar 

  • Adler, R. J., Brown, L. D. (1986). Tail behaviour for suprema of empirical processes. Ann. Probab. 14 1–30.

    Article  MathSciNet  MATH  Google Scholar 

  • Adler, R. J., Samorodnitsky, G. (1987). Tail behaviour for the suprema of Gaussian processes with applications to empirical processes. Ann. Probab. 15 1339–1351.

    Article  MathSciNet  MATH  Google Scholar 

  • Alexander, K. S. (1982). Some limit theorems and inequalities for weighted and non-identically distributed empirical processes. Ph. D. dissertation, Mathematics, Massachusetts Institute of Technology.

    Google Scholar 

  • Alexander, K. S. (1984). Probability inequalities for empirical processes and a law of the iterated logarithm. Ann. Probab. 12 1041–1067. Correction: 15 428-430 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  • Assouad, Patrice (1983). Densité et dimension. Ann. Inst. Fourier (Grenoble) 33 no. 3, 233–282.

    Article  MathSciNet  MATH  Google Scholar 

  • Cabaña, E. M. (1984). On the transition density of multidimensional parameter Wiener process with one barrier. J. Appl. Prob. 21 197–200.

    Article  MATH  Google Scholar 

  • Cabaña, E. M., Wschebor, M. (1982). The two-parameter Brownian bridge: Kolmogorov inequalities and upper and lower bounds for the distribution of the maximum. Ann. Probab. 10 289–302.

    Article  MathSciNet  MATH  Google Scholar 

  • Devroye, L. (1982). Bounds for the uniform deviation of empirical measures. J. Multivar. Analysis 12 72–79.

    Article  MathSciNet  MATH  Google Scholar 

  • Dudley, R. M. (1973). Sample functions of the Gaussian process. Ann. Probab. 1 66–103.

    Article  MathSciNet  MATH  Google Scholar 

  • Dudley, R. M. (1978). Central limit theorems for empirical measures. Ann. Probab. 6 899–929; Correction, 7 909-911 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  • Dudley, R. M. (1984). A course on empirical processes. Ecole d’été de probabilitiés de St.-Flour, 1982. Lect. Notes Math. (Springer) 1097 1–142.

    Article  MathSciNet  Google Scholar 

  • Dudley, R. M. (1985) The structure of some Vapnik-Červonenkis classes. In: Le Cam, L. M., Olshen, R. A. (eds.). Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, 1983, 2, 495–508. Wadsworth, Monterey, California.

    Google Scholar 

  • Dudley, R. M. (1989). Real Analysis and Probability. Brooks/Cole and Wads-worth, Belmont, Calif.

    MATH  Google Scholar 

  • Dvoretzky, A., Kiefer, J., Wolfowitz, J. (1956). Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. Ann. Math. Stat. 27 642–669.

    Article  MathSciNet  MATH  Google Scholar 

  • Goodman, V. (1976). Distribution estimates for functionals of the two-parameter Wiener process. Ann. Probab. 4 977–982.

    Article  MATH  Google Scholar 

  • Haussler, David (1991). Sphere packing numbers for subsets of the Boolean n-cube with bounded Vapnik-Chervonenkis dimension. Univ. Calif. Santa Cruz Computer Research Lab. Tech. Report UCSC-CRL-91-41.

    Google Scholar 

  • Kiefer, J. (1961). On large deviations of the empiric d.f. of vector chance variables and a law of the iterated logarithm. Pacific J. Math. 11 649–660.

    Article  MathSciNet  MATH  Google Scholar 

  • Kolmogorov, A. N. (1933). Sulla determinazione empirica di una legge di distribuzione. Giorn. Istit. Ital. Attuari 4 83–91.

    MATH  Google Scholar 

  • Leadbetter, M. R., Lindgren, G., and Rootzén, H. (1983). Extremes and Related Properties of Random Sequences and Processes. Springer, New York.

    Book  MATH  Google Scholar 

  • Lévy, P. (1965). Processus stochastiques et mouvement brownien, 2d. ed. (1st ed. 1948). Gauthier-Villars, Paris.

    MATH  Google Scholar 

  • Massart, P. (1983). Vitesses de convergence dans le théorème central limite pour des processus empiriques. C. R. Acad. Sci. Paris 296 Sér. I, 937–940.

    MathSciNet  MATH  Google Scholar 

  • Massart, P. (1986). Rates of convergence in the central limit theorem for empirical processes. Ann. Inst. Henri Poincaré (Prob.-Stat.) 22 381–423, also in: X. Fernique, B. Heinkel, M. B. Marcus, P. A. Meyer (eds.) Geometrical and Statistical Aspects of Probability in Banach Spaces. Proceedings, Strasbourg, 1985. Lect. Notes Math. (Springer) 1193 73-109 (1986).

    MathSciNet  MATH  Google Scholar 

  • Pickands, James III (1969). Upcrossing probabilities for stationary Gaussian processes. Trans. Amer. Soc. 145 51–73.

    Article  MathSciNet  MATH  Google Scholar 

  • Ruben, H. (1961). Probability content of regions under spherical normal distributions, III: the Divariate normal integral. Ann. Math. Statist. 32 171–186.

    Article  MathSciNet  Google Scholar 

  • Samorodnitsky, Gennady (1991). Probability tails of Gaussian extrema. Stochastic Processes Applies. 38, 55–84.

    Article  MathSciNet  MATH  Google Scholar 

  • Smith, D. L. (1985). Vapnik-Červonenkis classes and the supremum distribution of a Gaussian process. Ph.D. dissertation, Mathematics, Massachusetts Institute of Technology.

    Google Scholar 

  • Talagrand, M. (1992). Sharper bounds for empirical processes (preprint).

    Google Scholar 

  • Vapnik, V. N., Červonenkis, A. Ya. (1968). Uniform convergence of frequencies of occurrences of events to their probabilities. Sov. Math. Dokl. 9 915–918.

    MATH  Google Scholar 

  • Vapnik, V. N., Červonenkis, A. Ya. (1971). On the uniform convergence of relative frequences of events to their probabilities. Theory Prob. Appl. 16 264–280.

    Article  MATH  Google Scholar 

  • Wenocur, R. S., Dudley, R. M. (1981). Some special Vapnik-Chervonenkis classes. Discrete Math. 33 313–318.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Smith, D.L., Dudley, R.M. (1992). Exponential Bounds in Vapnik-Červonenkis Classes of Index 1. In: Dudley, R.M., Hahn, M.G., Kuelbs, J. (eds) Probability in Banach Spaces, 8: Proceedings of the Eighth International Conference. Progress in Probability, vol 30. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0367-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0367-4_31

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6728-7

  • Online ISBN: 978-1-4612-0367-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics