Skip to main content

Glial and Neuronal Generators of Sustained Potential Shifts Associated with Electrographic Seizures

  • Chapter
Basic Mechanisms of the EEG

Part of the book series: Brain Dynamics ((BD))

Abstract

There is no precise, formal, agreed boundary between slow EEG waves and sustained potential (SP) shifts. I use the term “SP” for shifts of voltage that last a second or more but do not exceed a few minutes and, in most cases, do not repeat or oscillate (Somjen, 1970, 1973). An imprecise but practical demarcation is given in that SP shifts cannot be recorded with conventional EEG recorders because they require DCcoupled amplification. Other authors have used the terms “DC potential,” “steady potential,” or “slow potential,” meaning more or less the same (Caspers et al., 1987; Haschke et al., 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adey WR (1969): Slow electrical phenomena in the central nervous system. Neurosci Res Progr Bull 7:75–180

    Google Scholar 

  • Aladjalova NA (1964): Slow Electrical Processes of the Brain. Progr Brain Res, Vol 7. Amsterdam: Elsevier

    Google Scholar 

  • Anderson WW, Lewis DV, Swartzwelder HS, Wilson WA (1986): Magnesiumfree medium activates seizure-like events in the rat hippocampal slice. Brain Res 398:215–219

    Article  Google Scholar 

  • Ben-Ari Y, Krnjević K, Reinhardt W (1979): Hippocampal seizures and failure of inhibition. Can J Physiol Pharmacol 57:1462–1466

    Article  Google Scholar 

  • Brazier MAB (1961): A History of the Electrical Activity of the Brain: The First Half Century.London: Pitman

    Google Scholar 

  • Brazier MAB (1963): The discoverers of steady potentials of the brain: Caton and Beck. UCLA Forum Med Sci 1:1–14

    Google Scholar 

  • Brookhart JM, Arduini A, Mancia M, Moruzzi G (1958): Thalamo-cortical relations as revealed by induced slow potential changes. J Neurophysiol 21:499–525

    Google Scholar 

  • Caspers H, Speckmann E-J, Lehmenkühler A (1987): DC potentials of the cerebral cortex. Rev Physiol Biochem Pharmacol 106:127–178

    Article  Google Scholar 

  • Castellucci VF, Goldring S (1970): Contribution to steady potential shifts of slow depolarization in cells presumed to be glia. Electroenceph Clin Neurophysiol 28:109–118

    Article  Google Scholar 

  • Cordingley GE, Somjen GG (1978): The clearing of excess potassium from extracellular space in spinal cord and cerebral cortex. Brain Res 151:291–306

    Article  Google Scholar 

  • Deecke L, Scheid P, Kornhuber HH (1969): Distribution of readiness potential, pre-motion positivity and motor potential of the human cerebral cortex preceding voluntary finger movement. Exp Brain Res 7:158–168

    Article  Google Scholar 

  • Fertziger AP, Ranck JB (1970): Potassium accumulation in interstitial space during epileptiform seizures. Exp Neurol 26:571–588

    Article  Google Scholar 

  • Galambos R (1961): A glia-neural theory of brain function. Proc Natl Acad Sci 47:129–136

    Article  Google Scholar 

  • Galambos R, Hillyard SA (1981): Electrophysiological approaches to human cognitive processing. Neurosci Res Progr Bull 20:141–265

    Google Scholar 

  • Gloor P, Vera CL, Sperti L, Ray SN (1961): Investigation of the mechanism of epileptic discharge in the hippocampus. Epilepsia 2:42–62

    Article  Google Scholar 

  • Green JD (1964): The hippocampus. Physiol Rev 44:561–608

    Google Scholar 

  • Gumnit RJ (1960): D.C. potential changes from auditory cortex of the cat. J Neurophysiol 23:667–675

    Google Scholar 

  • Haschke W, Speckmann E-J, Roitbak AI, eds. (1993): Slow Potential Changes in the Brain. Boston: Birkhäuser

    Google Scholar 

  • Heinemann U, Lux HD, Marciani MG, Hofmeier G (1979): Slow potentials in relation to changes in extracellular potassium activity in the cortex of cats. In: Origin of Cerebral Field Potentials. Stuttgart: Georg Thieme

    Google Scholar 

  • Jasper H, Erickson TC (1941): Cerebral blood flow and pH in excessive cortical discharge induced by metrazol and electrical stimulation. J Neurophysiol 4:333–347

    Google Scholar 

  • Kawamura H, Pompeiano O (1969): Tonic and phasic DC potential shifts in the cat spinal cord and brain during desynchronized sleep. Brain Behav Evol 2:263–287

    Article  Google Scholar 

  • Kuffler SW (1967): Neuroglial cells: Physiological properties and a potassium mediated effect of neuronal activity on the glial membrane potential. Proc Roy Soc B 168:1–21

    Article  Google Scholar 

  • Kuffler SW, Nicholls JG (1966): The physiology of neuroglial cells. Ergebn Physiol 57:1–90

    Article  Google Scholar 

  • Lopes da Silva FH, Witter MP, Boeijinga PH, Lohman AH (1990): Anatomic organization and physiology of the limbic cortex. Physiol Rev 70:453–511

    Google Scholar 

  • Lothman E, LaManna J, Cordingley G, Rosenthal M, Somjen G (1975): Responses of electrical potential, potassium levels and oxidative metabolism in cat cerebral cortex. Brain Res 88:15–36

    Article  Google Scholar 

  • Lothman EW, Somjen GG (1975): Extracellular potassium activity, intracellular and extracellular potential responses in the spinal cord. J Physiol (Lond) 252:115–136

    Google Scholar 

  • Lothman EW, Somjen GG (1976): Functions of primary afferents and responses of extracellular K+ during spinal epileptiform seizures. Electroenceph Clin Neurophysiol 41:253–267

    Article  Google Scholar 

  • Lux HD (1974): The kinetics of extracellular potassium: Relation to epileptogenesis. Epilepsia 15:375–393

    Article  Google Scholar 

  • Lux HD, Heinemann U (1978): Ionic changes during experimentally induced seizure activity. Electroenceph Clin Neurophysiol Suppl 34:289–297

    Google Scholar 

  • Marczynski TJ, York JZ, Allen SH, Rick JH, Sherry CJ (1971): Steady potential correlates of positive reinforcement and sleep onset in the cat: ‘Reward contingent positive variation.’ Brain Res 26:305–332

    Google Scholar 

  • Mugnaini, E (1986): Cell junctions of astrocytes, ependyma and related cells in the mammalian central nervous system, with emphasis on the hypothesis of a generalized functional syncytium of supporting cells. In: Astrocytes, Vol 1, Fedoroff S, Vernadakis A, eds. Orlando: Academic Press

    Google Scholar 

  • O’Leary JL, Goldring S (1964): D-C potentials of the brain. Physiol Rev 44:91–125

    Google Scholar 

  • Ransom BR, Carlini WG (1986): Electrophysiological properties of Astrocytes. In: Astrocytes, Vol 2, Fedoroff S, Vernadakis A, eds. Orlando: Academic Press

    Google Scholar 

  • Roitbak AI (1970): A new hypothesis concerning the mechanism of formation of conditional reflexes. Acta Neurobiol Exp 30:81–94

    Google Scholar 

  • Somjen GG (1969): Sustained evoked potential changes in the spinal cord. Brain Res 12:268–272

    Article  Google Scholar 

  • Somjen GG (1970): Evoked sustained focal potentials and membrane potential of neurones and of unresponsive cells of the spinal cord. J Neurophysiol 33:562–582

    Google Scholar 

  • Somjen GG (1973): Electrogenesis of sustained potentials. Progr Neurobiol 1:199–237

    Article  Google Scholar 

  • Somjen GG (1975): Electrophysiology of neuroglia. Ann Rev Physiol 37:163–190

    Article  Google Scholar 

  • Somjen GG (1978): Metabolic and electrical correlates of the clearing of excess potassium in the cortex and spinal cord. In: Studies in Neurophysiology, Porter R, ed. Cambridge: Cambridge University Press

    Google Scholar 

  • Somjen GG (1984): Interstitial ion concentration and the role of neuroglia in seizures. In: Electrophysiology of Epilepsy, Schwartzkroin PA, Wheal H, eds. London: Academic Press

    Google Scholar 

  • Somjen GG, Aitken PG, Giacchino JL, McNamara JO (1985): Sustained potential shifts and paroxysmal discharges in hippocampal formation. J Neurophysiol 53:1079–1097

    Google Scholar 

  • Somjen GG, Aitken PG, Giacchino JL, McNamara JO (1986): Interstitial ion concentrations and paroxysmal discharges in hippocampal formation and spinal cord. Adv Neurol 44:663–680

    Google Scholar 

  • Somjen GG, Giacchino JL (1985): Potassium and calcium concentrations in interstitial fluid of hippocampal formation during paroxysmal responses. J Neurophysiol 53:1098–1108

    Google Scholar 

  • Speckmann E-J, Caspers H, eds. (1979): Origin of Cerebral Field Potentials. Stuttgart: Georg Thieme

    Google Scholar 

  • Strittmatter WJ, Somjen GG (1973): Depression of sustained evoked potentials and glial depolarization in the spinal cord by barbiturates and by diphenylhydantoin. Brain Res 55:333–342

    Article  Google Scholar 

  • Traynelis SF, Dingledine R (1988): Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J Neurophysiol 59:259–276

    Google Scholar 

  • Wadman WJ, Juta AJA, Kamphuis W, Somjen GG (1992): Current source density of sustained potential shifts associated with electrographic seizures and with spreading depression in rat hippocampus. Brain Res 570:85–91

    Article  Google Scholar 

  • Walker JL (1971): Ion specific liquid ion exchanger microelectrodes. Analyt Chem 43:89A–93A

    Article  Google Scholar 

  • Walter WG (1968): The contingent negative variation: An electrocortical sign of sensory-motor reflex association in man. Progr Brain Res 22:364–377

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Somjen, G.G. (1993). Glial and Neuronal Generators of Sustained Potential Shifts Associated with Electrographic Seizures. In: Zschocke, S., Speckmann, EJ. (eds) Basic Mechanisms of the EEG. Brain Dynamics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0341-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0341-4_7

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6715-7

  • Online ISBN: 978-1-4612-0341-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics