Skip to main content

Mechanisms of EEG Generation — Historical and Present Aspects

  • Chapter
Basic Mechanisms of the EEG

Part of the book series: Brain Dynamics ((BD))

  • 368 Accesses

Abstract

The mechanisms underlying the generation of cortical field potentials as they appear in EEG and DC recordings, respectively, offer three different aspects. First the problem of generator structures may be considered. Which morphological elements, such as neurons or glial cells, are involved in producing slow potential fluctuations as well as shifts of the potential level (baseline)? A second question refers to the special processes of electrogenesis. How do the activities of the generator units sum up to field potentials traceable at greater distances from the site of origin? The third aspect of the topic is concerned with the generation of spontaneous, continuously running potential oscillations in corticothalamic reverberating circuits. Which structures participate and develop pacemaker functions?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brazier MAB (1959): The historical development of neurophysiology. In: Neurophysiology, Vol. 1 (Handbook of Physiology, Sect. 1), Field J, ed. Washington: American Physiological Society

    Google Scholar 

  • Brazier MAB (1963): The discoverers of the steady potentials of the brain: Caton and Beck. UCLA Forum Sci 1:1–14

    Google Scholar 

  • Caspers H (1959): Über die Beziehungen zwischen Dendritenpotential und Gleichspannung an der Hirnrinde. Pflügers Arch 269:157–181

    Article  Google Scholar 

  • Caspers H (1961): Die Entstehungsmechanismen des EEG. In: Klinische Elektroencephalographie, Janzen R, ed. Berlin: Springer

    Google Scholar 

  • Caspers H (1963): Relations of steady potential shifts in the cortex to the wakefulness-sleep spectrum. In: Brain Function, Brazier MAB, ed. Berkeley: University of California Press

    Google Scholar 

  • Caspers H (1974): Preface. In: Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 10/A, Remond A, ed. Amsterdam: Elsevier

    Google Scholar 

  • Caspers H, Speckmann E-J (1969): DC potential shifts in paroxysmal states. In: Basic Mechanisms of the Epilepsies, Jasper HH, Ward AA, Pope A, eds. Boston: Little, Brown

    Google Scholar 

  • Caspers H, Speckmann E-J (1974): Cortical DC shifts associated with changes of gas tensions in blood and tissue. In: Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 10/A, Remond A,ed. Amsterdam: Elsevier

    Google Scholar 

  • Caspers H, Speckmann E-J, Bingmann D, Lehmenkühler A (1986): Wirkungen von CO2 auf das Membranpotential einzelner Neurone. In: Aktuelle Probleme der Atmungs-und Kreislaufregulation, Grote J, Thews G, eds. Stuttgart: Steiner

    Google Scholar 

  • Caspers H, Speckmann E-J, Lehmenkühler A (1979): Effects of CO2 on cortical field potentials in relation to neuronal activity. In: Origin of Cerebral Field Potentials, Speckmann E-J, Caspers H, eds. Stuttgart: Thieme

    Google Scholar 

  • Caspers H, Speckmann E-J, Lehmenkühler A (1984): Electrogenesis of slow potentials of the brain. In: Self-Regulation of the Brain and Behavior, Elbert T, Rockstroh B, Lutzenberger W, Birbaumer N, eds. New York: Springer

    Google Scholar 

  • Caspers H, Speckmann E-J, Lehmenkühler A (1987): DC potentials of the cerebral cortex. Seizure activity and changes in gas pressures. Rev Physiol Biochem Pharmacol 106:127–178

    Article  Google Scholar 

  • Creutzfeldt OD (1969): Neuronal mechanisms underlying the EEG. In: Basic Mechanisms of the Epilepsies, Jasper HH, Ward AA, Pope A, eds. Boston: Little, Brown

    Google Scholar 

  • Creutzfeldt OD, Houchin J (1974): Neuronal basis of EEG waves. In: Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 2/C, Remond A, ed. Amsterdam: Elsevier

    Google Scholar 

  • Creutzfeldt OD, Kasamatsu A, Vaz-Ferreira A (1957): Aktivitätsänderungen einzelner corticaler Neurone im akuten Sauerstoffmangel und ihre Beziehungen zum EEG bei Katzen. Pflügers Arch 263:647–667

    Article  Google Scholar 

  • Creutzfeldt OD, Lux HD, Watanabe S (1966): Relations between EEG phenomena and potentials of single cortical cells. 2. Spontaneous and convulsoid activity. Electroenceph Clin Neurophysiol 20:19–37

    Article  Google Scholar 

  • Creutzfeldt OD, Ojemann GA, Chatrian GE (1993): Activity of single neurons and their relationship to normal EEG waves and interictal epilepsy potentials in humans. In: Slow Potential Changes in the Brain, Haschke W, Speckmann E-J, Roitbak A, eds. Boston: Birkhäuser

    Google Scholar 

  • Deecke L, Bashore T, Brunia CHM, Grünewald-Zuberbier E, Grünewald G, Kristeva R (1984): Movement-associated potentials and motor control. In: Brain and Information, Karrer R, Cohen J, Tueting P, eds. New York: The New York Academy of Sciences

    Google Scholar 

  • Eccles JC (1953): The Neurophysiological Basis of Mind.Oxford: Clarendon Press

    Google Scholar 

  • Elger CE, Speckmann E-J, Prohaska O, Caspers H (1981): Pattern of intracortical potential distribution during focal interictal epileptiform discharges (FIED) and its relation to spinal field potentials in the rat. Electroenceph Clin Neurophysiol 51:393–402

    Article  Google Scholar 

  • Gloor P (1969): Hans Berger. On the electroencephalogram of man. Electroenceph Clin Neurophysiol Suppl. 28. Amsterdam: Elsevier

    Google Scholar 

  • Gumnit R (1974): DC shifts accompanying seizure activity. In: Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 10/A, Remond A, ed. Amsterdam: Elsevier

    Google Scholar 

  • Haider M, Groll-Knapp E, Ganglberger JA (1981): Event-related slow (DC) potentials in the human brain. Rev Physiol Biochem Pharmacol 88:126–197

    Google Scholar 

  • Heinemann U, Lux HD, Marciani MG, Hofmeier G (1979): Slow potentials in relation to changes in extracellular potassium activity in the cortex of cats. In: Origin of Cerebral Field Potentials, Speckmann E-J, Caspers H, eds. Stuttgart: Thieme

    Google Scholar 

  • Jung R (1953): Neurophysiologische Untersuchungsmethoden. In: Handbuch der inneren Medizin, Bd V Neurologie, Bergmann G von, ed. Berlin: Springer

    Google Scholar 

  • Jung R, Baumgartner G (1955): Hemmungsmechanismen und bremsende Stabilisierung an einzelnen Neuronen des optischen Cortex. Pflügers Arch 261:434–456

    Article  Google Scholar 

  • Kornmüller AE (1947): Die Elemente der nervösen Tätigkeit.Stuttgart: Thieme

    Google Scholar 

  • Li C-L, Jasper HH (1953): Microelectrode studies of the electrical activity of the cerebral cortex in the cat. J Physiol (Lond) 121:117–140

    Google Scholar 

  • Loeschcke HH (1971): DC potentials between CSF and blood. In: Ion Homeostasis of the Brain, Siesjö BK, Sörensen SC, eds. Copenhagen: Munksgaard

    Google Scholar 

  • McCallum WC (1988): Potentials related to expectancy, preparation and motor activity. In: Human Event-Related Potentials-Handbook of Electroencephalography and Clinical Neurophysioloy,Vol. 3, Picton TW, ed. Amsterdam: Elsevier

    Google Scholar 

  • O’Leary JL, Goldring S (1964): DC potentials of the brain. Physiol Rev 44:91–125

    Google Scholar 

  • Prince DA (1974): Neuronal correlates of epileptiform discharges and cortical DC potentials. In: Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 2/C, Remond A, ed. Amsterdam: Elsevier

    Google Scholar 

  • Renshaw B, Forbes A, Morison RB (1940): Activity of isocortex and hippocampus: Electrical studies with micro-electrodes. J Neurophysiol 3:74–105

    Google Scholar 

  • Rockstroh B, Elbert T, Canavan A, Lutzenberger W, Birbaumer M (1989): Slow Cortical Potentials and Behaviour. 2nd ed. Munich: Urban & Schwarzenberg

    Google Scholar 

  • Roitbak AI (1983): Neuroglia. Eigenschaften, Funktionen, Bedeutung. Jena: Gustav Fischer

    Google Scholar 

  • Somjen GG (1973): Electrogenesis of sustained potentials. Prog Neurobiol 1:199–237

    Article  Google Scholar 

  • Somjen GG, Trachtenberg M (1979): Neuroglia as generator of extracellular current. In: Origin of Cerebral Field Potentials, Speckmann E-J, Caspers H, eds. Stuttgart: Thieme

    Google Scholar 

  • Speckmann E-J, Caspers H (1974): The effect of O2 and CO2 tensions in the nervous tissue on neuronal activity and DC potential. In: Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 2/C, Remond A, ed. Amsterdam: Elsevier

    Google Scholar 

  • Speckmann E-J, Caspers H (1979): Cortical field potentials in relation to neuronal activities in seizure conditions. In: Origin of Cerebral Field Potentials, Speckmann E-J, Caspers H, eds. Stuttgart: Thieme

    Google Scholar 

  • Speckmann E-J, Caspers H, Sokolov W (1970): Aktivitätsänderungen spinaler Neurone während und nach einer Asphyxie. Pflügers Arch 319:122–138

    Article  Google Scholar 

  • Speckmann E-J, Caspers H, Janzen RWC (1972): Relations between cortical DC shifts and membrane potential changes of cortical neurons associated with seizure activity. In: Synchronization of EEG Activity in Epilepsies, Petsche H, Brazier MAB, eds. New York: Springer

    Google Scholar 

  • Speckmann E-J, Caspers H, Janzen RWC (1978): Laminar distribution of cortical field potentials in relation to neuronal activities during seizure discharges. In: Architectonics of the Cerebral Cortex, Brazier MAB, Petsche H, eds. New York: Raven

    Google Scholar 

  • Staschen C-M, Lehmenkühler A, Zidek W, Caspers H (1987): Beziehungen zwischen kortikalen DC-Potentialen und der K+-Konzentration im Blut und Extrazellulärraum der Hirnrinde bei reversibler Asphyxie. ZEEG-EMG 18:53–57

    Google Scholar 

  • Tschirgi RD, Taylor JL (1958): Slowly changing bioelectric potentials associated with the blood-brain barrier. Am J Physiol 195:7–22

    Google Scholar 

  • Walter GW (1959): Intrinsic rhythms of the brain. In: Handbook of Physiology, Sect. 1, Neurophysiology, Field J, Magoun HW, Hall VE, eds. Washington: American Physiological Society

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Caspers, H. (1993). Mechanisms of EEG Generation — Historical and Present Aspects. In: Zschocke, S., Speckmann, EJ. (eds) Basic Mechanisms of the EEG. Brain Dynamics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0341-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0341-4_1

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6715-7

  • Online ISBN: 978-1-4612-0341-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics