Mechanisms of EEG Generation — Historical and Present Aspects

  • Heinz Caspers
Part of the Brain Dynamics book series (BD)

Abstract

The mechanisms underlying the generation of cortical field potentials as they appear in EEG and DC recordings, respectively, offer three different aspects. First the problem of generator structures may be considered. Which morphological elements, such as neurons or glial cells, are involved in producing slow potential fluctuations as well as shifts of the potential level (baseline)? A second question refers to the special processes of electrogenesis. How do the activities of the generator units sum up to field potentials traceable at greater distances from the site of origin? The third aspect of the topic is concerned with the generation of spontaneous, continuously running potential oscillations in corticothalamic reverberating circuits. Which structures participate and develop pacemaker functions?

Keywords

Depression Penicillin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brazier MAB (1959): The historical development of neurophysiology. In: Neurophysiology, Vol. 1 (Handbook of Physiology, Sect. 1), Field J, ed. Washington: American Physiological SocietyGoogle Scholar
  2. Brazier MAB (1963): The discoverers of the steady potentials of the brain: Caton and Beck. UCLA Forum Sci 1:1–14Google Scholar
  3. Caspers H (1959): Über die Beziehungen zwischen Dendritenpotential und Gleichspannung an der Hirnrinde. Pflügers Arch 269:157–181CrossRefGoogle Scholar
  4. Caspers H (1961): Die Entstehungsmechanismen des EEG. In: Klinische Elektroencephalographie, Janzen R, ed. Berlin: SpringerGoogle Scholar
  5. Caspers H (1963): Relations of steady potential shifts in the cortex to the wakefulness-sleep spectrum. In: Brain Function, Brazier MAB, ed. Berkeley: University of California PressGoogle Scholar
  6. Caspers H (1974): Preface. In: Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 10/A, Remond A, ed. Amsterdam: ElsevierGoogle Scholar
  7. Caspers H, Speckmann E-J (1969): DC potential shifts in paroxysmal states. In: Basic Mechanisms of the Epilepsies, Jasper HH, Ward AA, Pope A, eds. Boston: Little, BrownGoogle Scholar
  8. Caspers H, Speckmann E-J (1974): Cortical DC shifts associated with changes of gas tensions in blood and tissue. In: Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 10/A, Remond A,ed. Amsterdam: ElsevierGoogle Scholar
  9. Caspers H, Speckmann E-J, Bingmann D, Lehmenkühler A (1986): Wirkungen von CO2 auf das Membranpotential einzelner Neurone. In: Aktuelle Probleme der Atmungs-und Kreislaufregulation, Grote J, Thews G, eds. Stuttgart: SteinerGoogle Scholar
  10. Caspers H, Speckmann E-J, Lehmenkühler A (1979): Effects of CO2 on cortical field potentials in relation to neuronal activity. In: Origin of Cerebral Field Potentials, Speckmann E-J, Caspers H, eds. Stuttgart: ThiemeGoogle Scholar
  11. Caspers H, Speckmann E-J, Lehmenkühler A (1984): Electrogenesis of slow potentials of the brain. In: Self-Regulation of the Brain and Behavior, Elbert T, Rockstroh B, Lutzenberger W, Birbaumer N, eds. New York: SpringerGoogle Scholar
  12. Caspers H, Speckmann E-J, Lehmenkühler A (1987): DC potentials of the cerebral cortex. Seizure activity and changes in gas pressures. Rev Physiol Biochem Pharmacol 106:127–178CrossRefGoogle Scholar
  13. Creutzfeldt OD (1969): Neuronal mechanisms underlying the EEG. In: Basic Mechanisms of the Epilepsies, Jasper HH, Ward AA, Pope A, eds. Boston: Little, BrownGoogle Scholar
  14. Creutzfeldt OD, Houchin J (1974): Neuronal basis of EEG waves. In: Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 2/C, Remond A, ed. Amsterdam: ElsevierGoogle Scholar
  15. Creutzfeldt OD, Kasamatsu A, Vaz-Ferreira A (1957): Aktivitätsänderungen einzelner corticaler Neurone im akuten Sauerstoffmangel und ihre Beziehungen zum EEG bei Katzen. Pflügers Arch 263:647–667CrossRefGoogle Scholar
  16. Creutzfeldt OD, Lux HD, Watanabe S (1966): Relations between EEG phenomena and potentials of single cortical cells. 2. Spontaneous and convulsoid activity. Electroenceph Clin Neurophysiol 20:19–37CrossRefGoogle Scholar
  17. Creutzfeldt OD, Ojemann GA, Chatrian GE (1993): Activity of single neurons and their relationship to normal EEG waves and interictal epilepsy potentials in humans. In: Slow Potential Changes in the Brain, Haschke W, Speckmann E-J, Roitbak A, eds. Boston: BirkhäuserGoogle Scholar
  18. Deecke L, Bashore T, Brunia CHM, Grünewald-Zuberbier E, Grünewald G, Kristeva R (1984): Movement-associated potentials and motor control. In: Brain and Information, Karrer R, Cohen J, Tueting P, eds. New York: The New York Academy of SciencesGoogle Scholar
  19. Eccles JC (1953): The Neurophysiological Basis of Mind.Oxford: Clarendon PressGoogle Scholar
  20. Elger CE, Speckmann E-J, Prohaska O, Caspers H (1981): Pattern of intracortical potential distribution during focal interictal epileptiform discharges (FIED) and its relation to spinal field potentials in the rat. Electroenceph Clin Neurophysiol 51:393–402CrossRefGoogle Scholar
  21. Gloor P (1969): Hans Berger. On the electroencephalogram of man. Electroenceph Clin Neurophysiol Suppl. 28. Amsterdam: ElsevierGoogle Scholar
  22. Gumnit R (1974): DC shifts accompanying seizure activity. In: Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 10/A, Remond A, ed. Amsterdam: ElsevierGoogle Scholar
  23. Haider M, Groll-Knapp E, Ganglberger JA (1981): Event-related slow (DC) potentials in the human brain. Rev Physiol Biochem Pharmacol 88:126–197Google Scholar
  24. Heinemann U, Lux HD, Marciani MG, Hofmeier G (1979): Slow potentials in relation to changes in extracellular potassium activity in the cortex of cats. In: Origin of Cerebral Field Potentials, Speckmann E-J, Caspers H, eds. Stuttgart: ThiemeGoogle Scholar
  25. Jung R (1953): Neurophysiologische Untersuchungsmethoden. In: Handbuch der inneren Medizin, Bd V Neurologie, Bergmann G von, ed. Berlin: SpringerGoogle Scholar
  26. Jung R, Baumgartner G (1955): Hemmungsmechanismen und bremsende Stabilisierung an einzelnen Neuronen des optischen Cortex. Pflügers Arch 261:434–456CrossRefGoogle Scholar
  27. Kornmüller AE (1947): Die Elemente der nervösen Tätigkeit.Stuttgart: ThiemeGoogle Scholar
  28. Li C-L, Jasper HH (1953): Microelectrode studies of the electrical activity of the cerebral cortex in the cat. J Physiol (Lond) 121:117–140Google Scholar
  29. Loeschcke HH (1971): DC potentials between CSF and blood. In: Ion Homeostasis of the Brain, Siesjö BK, Sörensen SC, eds. Copenhagen: MunksgaardGoogle Scholar
  30. McCallum WC (1988): Potentials related to expectancy, preparation and motor activity. In: Human Event-Related Potentials-Handbook of Electroencephalography and Clinical Neurophysioloy,Vol. 3, Picton TW, ed. Amsterdam: ElsevierGoogle Scholar
  31. O’Leary JL, Goldring S (1964): DC potentials of the brain. Physiol Rev 44:91–125Google Scholar
  32. Prince DA (1974): Neuronal correlates of epileptiform discharges and cortical DC potentials. In: Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 2/C, Remond A, ed. Amsterdam: ElsevierGoogle Scholar
  33. Renshaw B, Forbes A, Morison RB (1940): Activity of isocortex and hippocampus: Electrical studies with micro-electrodes. J Neurophysiol 3:74–105Google Scholar
  34. Rockstroh B, Elbert T, Canavan A, Lutzenberger W, Birbaumer M (1989): Slow Cortical Potentials and Behaviour. 2nd ed. Munich: Urban & SchwarzenbergGoogle Scholar
  35. Roitbak AI (1983): Neuroglia. Eigenschaften, Funktionen, Bedeutung. Jena: Gustav FischerGoogle Scholar
  36. Somjen GG (1973): Electrogenesis of sustained potentials. Prog Neurobiol 1:199–237CrossRefGoogle Scholar
  37. Somjen GG, Trachtenberg M (1979): Neuroglia as generator of extracellular current. In: Origin of Cerebral Field Potentials, Speckmann E-J, Caspers H, eds. Stuttgart: ThiemeGoogle Scholar
  38. Speckmann E-J, Caspers H (1974): The effect of O2 and CO2 tensions in the nervous tissue on neuronal activity and DC potential. In: Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 2/C, Remond A, ed. Amsterdam: ElsevierGoogle Scholar
  39. Speckmann E-J, Caspers H (1979): Cortical field potentials in relation to neuronal activities in seizure conditions. In: Origin of Cerebral Field Potentials, Speckmann E-J, Caspers H, eds. Stuttgart: ThiemeGoogle Scholar
  40. Speckmann E-J, Caspers H, Sokolov W (1970): Aktivitätsänderungen spinaler Neurone während und nach einer Asphyxie. Pflügers Arch 319:122–138CrossRefGoogle Scholar
  41. Speckmann E-J, Caspers H, Janzen RWC (1972): Relations between cortical DC shifts and membrane potential changes of cortical neurons associated with seizure activity. In: Synchronization of EEG Activity in Epilepsies, Petsche H, Brazier MAB, eds. New York: SpringerGoogle Scholar
  42. Speckmann E-J, Caspers H, Janzen RWC (1978): Laminar distribution of cortical field potentials in relation to neuronal activities during seizure discharges. In: Architectonics of the Cerebral Cortex, Brazier MAB, Petsche H, eds. New York: RavenGoogle Scholar
  43. Staschen C-M, Lehmenkühler A, Zidek W, Caspers H (1987): Beziehungen zwischen kortikalen DC-Potentialen und der K+-Konzentration im Blut und Extrazellulärraum der Hirnrinde bei reversibler Asphyxie. ZEEG-EMG 18:53–57Google Scholar
  44. Tschirgi RD, Taylor JL (1958): Slowly changing bioelectric potentials associated with the blood-brain barrier. Am J Physiol 195:7–22Google Scholar
  45. Walter GW (1959): Intrinsic rhythms of the brain. In: Handbook of Physiology, Sect. 1, Neurophysiology, Field J, Magoun HW, Hall VE, eds. Washington: American Physiological SocietyGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Heinz Caspers

There are no affiliations available

Personalised recommendations