Skip to main content

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 11))

Abstract

This paper surveys the theory and applications of solutions of the Burgers’ equation with random initial data which are often called statistical solution. It grew out of a series of lectures delivered by the author in the Summer of ′92 at Nagoya University, Japan. It is far from complete and reflects only the author’s own interests. A description of other recent developments can be found in the bibliography provided in the last section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Albeverio S., Molchanov S.A., Surgailis D. (1992), Stratified structure of the Universe and Burgers’ equation, preprint.

    Google Scholar 

  2. Bramson M., Liggett T.M. (1986), Lectures in Probability, The University of Nagoya Press.

    Google Scholar 

  3. Bulinski A.V., Limit theorems under weak dependence conditions, in Probability Theory and Math. Stat., Proc. Fourth Vilnius Conf. v.1, Utrecht VNP 1987, pp. 307–327.

    Google Scholar 

  4. Bulinski A.V., Molchanov. S.A. Asymptotic normality of solutions of the Burgers equation with random initial data. Teorya Veroyat Prim. 36 (1991) 217–235.

    Google Scholar 

  5. Burgers J.M., The Nonlinear Diffusion Equation, Reidel 1974.

    Google Scholar 

  6. Cole J.D. (1951), On a quasi-linear parabolic equation occurring in aerodynamics, Quart. Appl. Math. 9, 225.

    Google Scholar 

  7. Dobrushin (1980), Automodel generalized random fields and their renorm group, in Multicomponent Random Systems, R.L. Dobrushin and Ya. G. Sinai (Eds.), Dekker, pp. 153–198.

    Google Scholar 

  8. Giraitis L., Molchanov S.A., Surgailis D.(1992), Long memory shot noises and limit theorems with application to Burgers; equation, in New Directions in Time Series Analysis, IMA Volumes in Mathematics and Its Applications, Springer, to appear.

    Google Scholar 

  9. Gurbatov S., Saichev A., Shandarin S.F. (1989), The large-scale structure of the Universe in the frame of the model equation of nonlinear diffusion, Monthly Not. Royal Astronom. Soc. 236, 385–402.

    Google Scholar 

  10. Gurbatov S., Malakhov A., Saichev A. (1991), Nonlinear Random Waves and Turbulence in Nondispersive Media: Waves, Rays and Particles, Manchester University Press.

    Google Scholar 

  11. Gutkin E., Kac M. (1983), Propagation of chaos and the Burgers’ equation, SIAM J. Appl. Math. 43, 971–980.

    Article  Google Scholar 

  12. K. Handa, A remark on shocks in inviscid Burgers turbulence, in Nonlinear Waaves and Weak Turbulence, Birkhäuser-Boston 1993, pp. 333–339.

    Google Scholar 

  13. Hopf E. (1950), The partial differential equation u Pt + uu Pxx = u Pxx , Commun. Pure Appl. Math. 3, 201.

    Article  Google Scholar 

  14. Hu Y., Woyczynski W.A. (1992), Limit behavior of quadratic forms of moving averages of i.i.d. random variables and statistical solutions of the Burgers’ equation, J. Multivariate Analysis, to appear.

    Google Scholar 

  15. Hu Y., Woyczynski W.A.(1993), An extremal rearrangement property of statistical solutions of the Burgers’ equation, Ann. Appl. Prob, to appear.

    Google Scholar 

  16. Hu Y., Woyczynski W.A.(1993a), A maximum principle for unimodal moving average data for Burgers’ equation, Prob. Math. Stat., to appear.

    Google Scholar 

  17. Ibragimov I.A., and Linnik Yu.V. (1965), Independent and Stationary Random Processes, Moscow, Nauka.

    Google Scholar 

  18. Kotani S., Osada H. (1985), Propagation of chaos for Burgers’ equation, J. Math. Soc. Japan, 37, 275–294.

    Article  Google Scholar 

  19. Kwapien S., Woyczynski W.A. (1992), Random Series and Stochastic Integrals: Single and Multiple, Birkhäuser-Boston.

    Google Scholar 

  20. Oeschläger K. (1985), A law of large numbers for moderately interacting diffusion processes, Z. Wahrscheinlichkeitstheorie venu. Geb. 69, 279–322.

    Article  Google Scholar 

  21. Rosenblatt M. (1987), Scale renormalization and random solutions of the Burgers equation. J. Appl. Prob. 24. 328–338.

    Article  Google Scholar 

  22. Rosenblatt M. (1978), Energy transfer for the Burgers’ equation, Physics of Fluids 21, 1694–1697.

    Article  Google Scholar 

  23. Ruelle D. (1969), Statistical Mechanics, Benjamin.

    Google Scholar 

  24. Schur I. (1923), Über eine Klasse von Mittelbildungen mit Anwendungen zur die Determinanten-Theorie, Sitzungsber. Berlin Math. Gesellschaft 22, 9–20.

    Google Scholar 

  25. Shandarin S.F. and Zeldovich B.Z., Turbulence (1989), intermittency, structures in a self-gravitating medium: the large scale structure of the universe, Rev. Modern Phys. 61, 185–220.

    Google Scholar 

  26. She Z-S., Aurell E. and Frisch U. (1992), The inviscid Burgers equation with initial data of Brownian type, Commun. Math. Phys. 148, 623–641.

    Article  Google Scholar 

  27. Sinai Ya.G. (1992), Statistics of shocks in solutions of inviscid Burgers equation, Commun. Math. Phys. 148, 601–621.

    Article  Google Scholar 

  28. Spohn H. (1991), Large Scale Dynamics of Interacting Particles, Springer-Verlag.

    Google Scholar 

  29. Surgailis D., Woyczynski W.A. (1993), Long range prediction and scaling limit for statistical solutions of the Burgers’ equation, in Nonlinear Waaves and Weak Turbulence, Birkhäuser-Boston 1993, 23 pp., to appear.

    Google Scholar 

  30. Surgailis D., Woyczynski W.A. (1993b), Scaling limits of the solution of the Burgers’ equation with singular Gaussian initial data, in Proc. Mexico Conf on Multiple Stochastic Integration, Birkhauser-Boston, to appear.

    Google Scholar 

  31. Surgailis D., Woyczynski W.A. (1994), Burgers’ equation with nonlocal shot noise data, J. Appl. Prob., to appear.

    Google Scholar 

  32. Sznitman A. (1986), A propagation of chaos result for Burgers’ equation, Probab. Th. Rel. Fields 71, 581–613.

    Article  Google Scholar 

  33. Weinberg D.H., Gunn J.E. (1990), Large-scale structure and the adhesion approximation, Monthly Not. Royal Astronom. Soc. 247, 260–286.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Woyczyński, W.A. (1993). Stochastic Burgers’ Flows. In: Fitzmaurice, N., Gurarie, D., McCaughan, F., Woyczyński, W.A. (eds) Nonlinear Waves and Weak Turbulence. Progress in Nonlinear Differential Equations and Their Applications, vol 11. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0331-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0331-5_15

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6711-9

  • Online ISBN: 978-1-4612-0331-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics