Skip to main content

Embedding Distributive Lattices Preserving 1 below a Nonzero Recursively Enumerable Turing Degree

  • Chapter
Logical Methods

Part of the book series: Progress in Computer Science and Applied Logic ((PCS,volume 12))

  • 224 Accesses

Abstract

One way to try to gain an understanding of the various degree-theoretic structures which recursion theorists study is to see what lattices can be embedded into them. Lattice embeddings have been used to show that such structures have an undecidable theory (via embeddings as initial segments) and to show that the theory of such structures is decidable up to a certain quantifier level. Many results in recursion theory can be stated as results about lattice embeddings even if they were not originally phrased that way.

This author was supported by a grant of the Stiftung Volkswagenwerk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambos-Spies, K. [1980], On the Structure of the Recursively Enumerable Degrees. PhD Thesis, University of Munich.

    Google Scholar 

  2. Ambos-Spies, K. [1984], Contiguous r.e. degrees. In Proceedings of Logic Colloquium’ 83 (Aachen), Lecture Notes in Mathematics, No. 1104, 1–37. Springer-Verlag, Berlin.

    Google Scholar 

  3. Ambos-Spies, K. and P.A. Fejer [1988], Degree theoretical splitting properties of recursively enumerable sets. J. Symbolic Logic, 53, 1110–1137.

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambos-Spies, K., S. Lempp and M. Lerman, Lattice embeddings into the r.e. degrees preserving 0 and 1. To appear.

    Google Scholar 

  5. Ambos-Spies, K., S. Lempp and M. Lerman, Lattice embeddings into the r.e. degrees preserving 1. To appear.

    Google Scholar 

  6. Ambos-Spies, K. and M. Lerman [1986], Lattice embeddings into the recursively enumerable degrees. J. Symbolic Logic, 51, 257–272.

    Article  MathSciNet  MATH  Google Scholar 

  7. Ambos-Spies, K. and M. Lerman [1989], Lattice embeddings into the recursively enumerable degrees, II. J. Symbolic Logic, 54, 735–760.

    Article  MathSciNet  MATH  Google Scholar 

  8. Downey, R. [1990], Lattice nonembeddings and initial segments of the recursively enumerable degrees. Annals of Pure and Appl. Logic, 49, 97–119.

    Article  MathSciNet  MATH  Google Scholar 

  9. Downey, R. [1990], Notes on the 0″’-priority method with special attention to density results. In K. Ambos Spies, G.H. Müller and G.E. Sacks (eds.), Recursion Theory Week (Proc. of a Conference Held in Oberwolfach, FRG, March 19-25, 1989), Lecture Notes in Mathematics No. 1432, 114–140. Springer-Verlag, Berlin.

    Google Scholar 

  10. Fejer, P.A. [1982], Branching degrees above low degrees. Trans. of the Amer. Math. Soc, 273, 157–180.

    Article  MathSciNet  MATH  Google Scholar 

  11. Jockusch, C.G., Jr. and R.A. Shore [1983], Pseudo jump operators I: The r.e. case. Trans. of the Amer. Math. Soc, 275, 599–609.

    MathSciNet  MATH  Google Scholar 

  12. Lachlan, A.H. [1966], Lower bounds for pairs of recursively enumerable degrees. Proc. of the London Math. Soc. (3), 16, 537–569.

    Article  MathSciNet  MATH  Google Scholar 

  13. Lachlan, A.H. [1972], Embedding nondistributive lattices in the recursively enumerable degrees. In W. Hodges (ed.), Conference in Mathematical Logic, London, 1970, Lecture Notes in Mathematics, No. 255, 149–177. Springer-Verlag, Berlin.

    Google Scholar 

  14. Lachlan, A.H. [1975], A recursively enumerable degree which will not split over all lesser ones. Annals of Math Logic, 9, 307–365.

    Article  MathSciNet  MATH  Google Scholar 

  15. Lachlan, A.H. [1979], Bounding minimal pairs. J. of Symbolic Logic, 44, 626–642.

    Article  MathSciNet  MATH  Google Scholar 

  16. Lachlan, A.H. [1980], Decomposition of recursively enumerable degrees. Proc. of the Amer. Math. Soc, 79, 629–634.

    Article  MathSciNet  MATH  Google Scholar 

  17. Lachlan, A.H. and R.I. Soare [1980], Not every finite lattice is embeddable in the recursively enumerable degrees. Advances in Mathematics, 37, 74–82.

    Article  MathSciNet  MATH  Google Scholar 

  18. Ladner, R.E. and L.P. Sasso, Jr. [1975], The weal; truth table degrees of recursively enumerable sets. Ann. of Math. Logic, 8, 429–448.

    Article  MathSciNet  MATH  Google Scholar 

  19. Shoenfield, J.R. and R.I. Soare [1978], The generalized diamond theorem. Recursive Function Theory Newsletter, 19. Abstract Number 219.

    Google Scholar 

  20. Slaman, T.A. [1991], The density of infima in the recursively enumerable degrees. Annals of Pure and Appl. Logic, 52, 155–179.

    Article  MathSciNet  MATH  Google Scholar 

  21. Soare, R.I. [1987], Recursively Enumerable Sets and Degrees: The Study of Computable Functions and Computably Generated Sets. Perspectives in Mathematical Logic, Ω Series. Springer Verlag, Berlin.

    Google Scholar 

  22. Thomason, S.K. [1971], Sublaltices of the recursively enumerable degrees. Zeitschrift f. Math. Logik u. Grundlagen d. Mathematik, 17, 273–280.

    Article  MathSciNet  MATH  Google Scholar 

  23. Yates, C.E.M. [1966], A minimal pair of recursively enumerable degrees. J. Symbolic Logic, 31, 159–168.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ambos-Spies, K., Decheng, D., Fejer, P.A. (1993). Embedding Distributive Lattices Preserving 1 below a Nonzero Recursively Enumerable Turing Degree. In: Crossley, J.N., Remmel, J.B., Shore, R.A., Sweedler, M.E. (eds) Logical Methods. Progress in Computer Science and Applied Logic, vol 12. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0325-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0325-4_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6708-9

  • Online ISBN: 978-1-4612-0325-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics