Advertisement

Embedding Distributive Lattices Preserving 1 below a Nonzero Recursively Enumerable Turing Degree

  • Klaus Ambos-Spies
  • Ding Decheng
  • Peter A. Fejer
Chapter
  • 159 Downloads
Part of the Progress in Computer Science and Applied Logic book series (PCS, volume 12)

Abstract

One way to try to gain an understanding of the various degree-theoretic structures which recursion theorists study is to see what lattices can be embedded into them. Lattice embeddings have been used to show that such structures have an undecidable theory (via embeddings as initial segments) and to show that the theory of such structures is decidable up to a certain quantifier level. Many results in recursion theory can be stated as results about lattice embeddings even if they were not originally phrased that way.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ambos-Spies, K. [1980], On the Structure of the Recursively Enumerable Degrees. PhD Thesis, University of Munich.Google Scholar
  2. [2]
    Ambos-Spies, K. [1984], Contiguous r.e. degrees. In Proceedings of Logic Colloquium’ 83 (Aachen), Lecture Notes in Mathematics, No. 1104, 1–37. Springer-Verlag, Berlin.Google Scholar
  3. [3]
    Ambos-Spies, K. and P.A. Fejer [1988], Degree theoretical splitting properties of recursively enumerable sets. J. Symbolic Logic, 53, 1110–1137.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Ambos-Spies, K., S. Lempp and M. Lerman, Lattice embeddings into the r.e. degrees preserving 0 and 1. To appear.Google Scholar
  5. [5]
    Ambos-Spies, K., S. Lempp and M. Lerman, Lattice embeddings into the r.e. degrees preserving 1. To appear.Google Scholar
  6. [6]
    Ambos-Spies, K. and M. Lerman [1986], Lattice embeddings into the recursively enumerable degrees. J. Symbolic Logic, 51, 257–272.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Ambos-Spies, K. and M. Lerman [1989], Lattice embeddings into the recursively enumerable degrees, II. J. Symbolic Logic, 54, 735–760.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    Downey, R. [1990], Lattice nonembeddings and initial segments of the recursively enumerable degrees. Annals of Pure and Appl. Logic, 49, 97–119.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    Downey, R. [1990], Notes on the 0″’-priority method with special attention to density results. In K. Ambos Spies, G.H. Müller and G.E. Sacks (eds.), Recursion Theory Week (Proc. of a Conference Held in Oberwolfach, FRG, March 19-25, 1989), Lecture Notes in Mathematics No. 1432, 114–140. Springer-Verlag, Berlin.Google Scholar
  10. [10]
    Fejer, P.A. [1982], Branching degrees above low degrees. Trans. of the Amer. Math. Soc, 273, 157–180.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    Jockusch, C.G., Jr. and R.A. Shore [1983], Pseudo jump operators I: The r.e. case. Trans. of the Amer. Math. Soc, 275, 599–609.MathSciNetzbMATHGoogle Scholar
  12. [12]
    Lachlan, A.H. [1966], Lower bounds for pairs of recursively enumerable degrees. Proc. of the London Math. Soc. (3), 16, 537–569.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    Lachlan, A.H. [1972], Embedding nondistributive lattices in the recursively enumerable degrees. In W. Hodges (ed.), Conference in Mathematical Logic, London, 1970, Lecture Notes in Mathematics, No. 255, 149–177. Springer-Verlag, Berlin.Google Scholar
  14. [14]
    Lachlan, A.H. [1975], A recursively enumerable degree which will not split over all lesser ones. Annals of Math Logic, 9, 307–365.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    Lachlan, A.H. [1979], Bounding minimal pairs. J. of Symbolic Logic, 44, 626–642.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    Lachlan, A.H. [1980], Decomposition of recursively enumerable degrees. Proc. of the Amer. Math. Soc, 79, 629–634.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    Lachlan, A.H. and R.I. Soare [1980], Not every finite lattice is embeddable in the recursively enumerable degrees. Advances in Mathematics, 37, 74–82.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    Ladner, R.E. and L.P. Sasso, Jr. [1975], The weal; truth table degrees of recursively enumerable sets. Ann. of Math. Logic, 8, 429–448.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    Shoenfield, J.R. and R.I. Soare [1978], The generalized diamond theorem. Recursive Function Theory Newsletter, 19. Abstract Number 219.Google Scholar
  20. [20]
    Slaman, T.A. [1991], The density of infima in the recursively enumerable degrees. Annals of Pure and Appl. Logic, 52, 155–179.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    Soare, R.I. [1987], Recursively Enumerable Sets and Degrees: The Study of Computable Functions and Computably Generated Sets. Perspectives in Mathematical Logic, Ω Series. Springer Verlag, Berlin.Google Scholar
  22. [22]
    Thomason, S.K. [1971], Sublaltices of the recursively enumerable degrees. Zeitschrift f. Math. Logik u. Grundlagen d. Mathematik, 17, 273–280.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    Yates, C.E.M. [1966], A minimal pair of recursively enumerable degrees. J. Symbolic Logic, 31, 159–168.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Klaus Ambos-Spies
    • 1
  • Ding Decheng
    • 2
  • Peter A. Fejer
    • 3
  1. 1.Mathematisches InstitutUniversität HeidelbergHeidelbergGermany
  2. 2.Department of MathematicsNanjing UniversityNanjingPeople’s Republic of China
  3. 3.Department of Mathematics and Computer ScienceUniversity of Massachusetts at BostonBostonUSA

Personalised recommendations