Skip to main content

Bihamiltonian Manifolds And Sato’s Equations

  • Chapter
Integrable Systems

Part of the book series: Progress in Mathematics ((PM,volume 115))

Abstract

This paper is a concise introduction to Sato’s equations from the point of view of Hamiltonian mechanics. It aims to show that the theory of soliton equations may be completely built on the study of the Casimir functions of a pencil of Poisson brackets on a Poisson manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Casati, F. Magri, M. Pedroni, Bihamiltonian Manifolds and τ-Junction, Mathematical Aspects of Classical Field Theory 1991 (M.J. Gotay, J.E. Mardsen, V.E. Moncrief, eds.), Contemporary Mathematics 132, American Mathematical Society, Providence.

    Google Scholar 

  2. A. C. Newell, Solitons in Mathematics and Physics, S.I.A.M., Philadelphia, 1985.

    Book  Google Scholar 

  3. E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Transformation Groups for Soliton Equations, Proceedings of R.I.M.S. Symposium on “Nonlinear Integrable Systems-Classical Theory and Quantum Theory” (1983), World Scientific, Singapore.

    Google Scholar 

  4. H. Flaschka, A. C. Newell, T. Ratiu, Kac-Moody Lie Algebras and Soli-ton Equations, Physica 9D (1983), 300–323.

    MathSciNet  Google Scholar 

  5. Y. Kosmann-Schwarzbach, F. Magri, Poisson-Nijenhuis Structures, Ann. Inst. Poincaré 53 (1990), 35–81.

    MathSciNet  MATH  Google Scholar 

  6. V. G. Drinfeld, V. V. Sokolov, Lie Algebras and Equations of Korteweg-de Vries Type, J. Sov. Math. 30 (1985), 1975–2036.

    Article  Google Scholar 

  7. P. Casati, M. Pedroni, Drinfeld Sokolov Reduction on a Simple Lie Algebra from the Bihamiltonian Point of View, Lett. Math. Phys. 25 (1992), 89–101.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. A. Semenov-Tian-Shansky, What is the classical r-matrix?, Funct. Anal. and Appl. 17 (1983), 259–272.

    Article  Google Scholar 

  9. D. Mumford, Tata Lectures on Theta II, Birkhäuser, Boston, 1984.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Casati, P., Magri, F., Pedroni, M. (1993). Bihamiltonian Manifolds And Sato’s Equations. In: Babelon, O., Kosmann-Schwarzbach, Y., Cartier, P. (eds) Integrable Systems. Progress in Mathematics, vol 115. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0315-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0315-5_13

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6703-4

  • Online ISBN: 978-1-4612-0315-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics