An Algebraic Approach to Linear and Nonlinear Control

  • M. Fliess
  • S. T. Glad
Part of the Progress in Systems and Control Theory book series (PSCT, volume 14)


The analysis and design of control systems has been greatly influenced by the mathematical tools being used. Maxwell introduced linear differential equations in the 1860’s. Nyquist, Bode and others started the systematic use of tranfer functions, utilizing complex analysis in the 1930’s. Kalman brought forward state space analysis around 1960. For nonlinear systems, differential geometric concepts have been of great value recently. We will argue here that algebraic methods can be very useful for both linear and nonlinear systems. To give some motivation we will begin by looking at a few examples.


Nonlinear Control Algebraic Approach Algebraic Differential Equation Differential Algebra Transcendence Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Ackermann, Sampled-Data Control Systems, Springer-Verlag, Berlin, 1985.zbMATHCrossRefGoogle Scholar
  2. [2]
    P. M. Cohn, Free Rings and their Relations, Academic Press, London, 1985.zbMATHGoogle Scholar
  3. [3]
    J.M. Coron, Linearized control systems and application to smooth stabilization, SIAM J. Control Optimiz.,1993.Google Scholar
  4. [4]
    E. Delaleau, Lowering orders of input derivatives in generalized state representations. Proc. IFAC-Symposium NOLCOS’92, Bordeaux (1992) 209–213.Google Scholar
  5. [5]
    E. Delaleau and W. Respondek, Removing input derivatives and lowering their orders in generalized state-space representations. In Proc. 31st IEEE Control Decision Conf., Tucson. (1991)Google Scholar
  6. [6]
    E. Delaleau and M. Fliess, Algorithme de structure, filtrations et découplage, C.R. Acad. Sci. Paris, I-315, pp. 101–106, 1992.MathSciNetGoogle Scholar
  7. [7]
    S. Diop, Elimination in Control Theory, Math. Control Signals Systems, 4, 17–32, 1991.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    S. Diop, Differential-algebraic decision methods and some applications to system theory, Theoretical Computer Science, 98, 137–161, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    S. Diop and M. Fliess, On nonlinear observability, in C. Commault et al eds., Proc. 1st European Control Conf., Hermës, Paris, 152–157, 1991.Google Scholar
  10. [10]
    S. Diop and M. Fliess, Nonlinear observability, identifiability and persistent trajectories, in Proc. 30th IEEE Conf. on Decision and Control, IEEE Press, New York, 714–719, 1991.Google Scholar
  11. [11]
    M. Fliess, Automatique et corps différentiels, Forum Math., 227–238, 1989.Google Scholar
  12. [12]
    M. Fliess, Generalized Controller Canonical Forms for Linear and Nonlinear Dynamics, IEEE Trans. Automatic Control, AC-35, 994–1001, 1990.MathSciNetCrossRefGoogle Scholar
  13. [13]
    M. Fliess, Some structural properties of generalized linear systems, Systems Control Lett, 15, 1990, pp. 391–396.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    M. Fliess, A simple definition of hidden modes, poles and zeros, Kybernetika, 27, pp. 186–189, 1991.MathSciNetzbMATHGoogle Scholar
  15. [15]
    M. Fliess, A remark on Willems’ trajectory characterization of linear controllability, Systems Control Lett., 19, pp. 43–45, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    M. Fliess and M. Hasler, Questioning the classical state space description via circuit examples. In M. A. Kashoek, J. H. van Schuppen and A. C. M. Ran, editors, Realization and Modelling in System Theory, MTNS’ 89, Birkhuser, 1990 volume 1, 1–12.CrossRefGoogle Scholar
  17. [17]
    M. Fliess, J. Lévine and P. Rouchon, A simplified approach of crane control via a generalized state-space model. Proceedings 30th IEEE Control Decision Conf., Brighton, 1991, 736–741.Google Scholar
  18. [18]
    M. Fliess, J. Lévine and P. Rouchon, Sur les systèmes non linéaires différentiellement plats, C. R. Acad. Sci. Paris, 315-I, 619–624, 1992.Google Scholar
  19. [19]
    M. Fliess, J. Lévine and P. Rouchon, Index of an implicit time-varying linear differential equation: A noncommutative linear algebraic approach. Linear Algebra Applications, to appear.Google Scholar
  20. [20]
    M. Fliess and F Messager, Vers une stabilisation non linéaire discontinue, in A. Bensoussan and J. L. Lions eds. Analysis and Optimization of Systems, Lect. Notes Control Inform. Sci., 144, Springer, Berlin, 778–787, 1990.Google Scholar
  21. [21]
    M. J. Freedmann and J. C. Willems, Smooth representation of systems with differentiated inputs, IEEE Trans. Automat. Control 23 (1978) 16–21.CrossRefGoogle Scholar
  22. [22]
    K. Forsman, Constructive Commutative Algebra in Nonlinear Control Theory, Linkping Studies in Science and Technology, 261, 1991.Google Scholar
  23. [23]
    S. T. Glad, Nonlinear state-space and input-output descriptions using differential polynomials. In J. Descusse, M. Fliess, A. Isidori and D. Leborgne, eds., New Trends in Nonlinear Control Theory, vol. 112 Lecture Notes in Control and Information Sciences, Springer verlag, (1989), 182–189.CrossRefGoogle Scholar
  24. [24]
    S. T. Glad, Differential algebraic modelling of nonlinear systems, In M. A. Kashoek, J. H. van Schuppen and A. C. M. Ran, editors, Realization and Modelling in System Theory, MTNS’ 89, Birkhuser, 1990 volume 1, 97–105.CrossRefGoogle Scholar
  25. [25]
    S. T. Glad, Nonlinear regulators and Ritt’s remainder algorithm, in Colloque International sur l’Analyse des Systèmes Dynamiques Conirolés, Lyon, July 3–6, 1990Google Scholar
  26. [26]
    S. T. Glad, Implementing Ritt’s algorithm of differential algebra, IFAC Symposium on Control Systems Design,NOLCOS’92, Bordeaux, France, 610–614, 1992.Google Scholar
  27. [27]
    S. T. Glad and L. Ljung, Model Structure Identifiability and Persistence of Excitation, Proc. 29th CDC, Honululu, Hawaii, 1990, 3236–3240.Google Scholar
  28. [28]
    H. M. Edwards, Galois Theory, Springer-Verlag, Berlin, 1984zbMATHGoogle Scholar
  29. [29]
    M. Hasler and J. Neirynck, Circuits non linéaires,Presses Polytechniques Romandes, Lausanne, 1985; in English: Nonlinear Circuits, Artech House, Boston, 1986.Google Scholar
  30. [30]
    R. Hermann and A. J. Krener, Nonlinear Controllability and Observability, IEEE Trans. Automat. Control, 22 (1977) 728–740.MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    D. Hilbert, Ueber den Begriff der Klasse von Differentialgleichungen,Math. Ann., 73, 1912, pp. 95–108.MathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    A. Isidori, Nonlinear Control Systems, 2nd ed., Springer-Verlag, New York, 1989.zbMATHGoogle Scholar
  33. [33]
    J. Johnson, Kähler differentials and differential algebra, Ann. of Math, 89, 92–98, 1969.MathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    T. Kailath, Linear systems, Prentice-Hall, Englewood Cliffs, N. J., 1980.zbMATHGoogle Scholar
  35. [35]
    R. E. Kalman. Mathematical description of linear systems, SIAM J. Control, vol. 1, 152–192, 1963.MathSciNetzbMATHGoogle Scholar
  36. [36]
    R. E. Kalman. Lectures on Controllability and Observability, CIME Summer Course (Cremonese, Rome, 1968).Google Scholar
  37. [37]
    R. E. Kalman, P. L. Falb and M. A. Arbib, Topics in Mathematical System Theory, McGraw-Hill, New York, 1969.zbMATHGoogle Scholar
  38. [38]
    E. R. Kolchin, Extensions of differential fields, III, Bull. Amer. Math. Soc., 53, 1947, 397–401.MathSciNetzbMATHCrossRefGoogle Scholar
  39. [39]
    E. R. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, New York, 1973.zbMATHGoogle Scholar
  40. [40]
    E. Kunz, Kähler differentials, Vieweg, Braunschweig/Wiesbaden, 1986.zbMATHGoogle Scholar
  41. [41]
    J. W. Nieuwenhuis and J. C. Willems, Deterministic ARMA models, in A. Bensoussan and J. L. Lions eds. Analysis and Optimization of Systems, Lecture Notes Control Inform. Sci., 83, 429–439,Springerverlag, Berlin, 1986.CrossRefGoogle Scholar
  42. [42]
    H. Nijmeijer and A. van der Schaft, Nonlinear Dynamical Control Systems, Springer-Verlag, New York, 1990.zbMATHGoogle Scholar
  43. [43]
    F. Ollivier, Le problème de l’identifiabilité structurelle globale: approche théorique, méthodes effectives et bornes de complexité, Thèse de Doctorat en Science, École Polytechnique, 1990.Google Scholar
  44. [44]
    F. Ollivier, Generalized standard bases with applications to control, Proc. European Control Conference, ECC’91, 170–176, 1991.Google Scholar
  45. [45]
    J. F. Pommaret, Lie Pseudogroups and Mechanics, Gordon and Breach, New York, 1988.zbMATHGoogle Scholar
  46. [46]
    J. F. Ritt, Differential algebra, American Mathematical Society, Providence, RI, 1950.zbMATHGoogle Scholar
  47. [47]
    C. E. Schrader and M. K. Sain, Research on system zeros: A Survey, Internat. J. Control, 50, 1407–1433, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  48. [48]
    I.R. Shafarevitch, Basic Notions of Algebra, in A.I. Kostrikin and I.R. Shafarevitch eds, Algebra I, Encycl. Math. Sci., Springer-Verlag, Berlin, 1990.Google Scholar
  49. [49]
    E.D. Sontag, Finite dimensional open loop control generator for nonlinear control systems, Internat. J. Control, 47, pp. 537–556. 1988.MathSciNetzbMATHCrossRefGoogle Scholar
  50. [50]
    E.D. Sontag, Universal nonsingular controls, Systems Control Lett., 19, pp. 221–224. 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  51. [51]
    H. J. Sussmann and V. Jurdjevic, Controllability of Nonlinear Systems, J. Dif. Equations, 12, 95–116, 1972.MathSciNetzbMATHCrossRefGoogle Scholar
  52. [52]
    B. L. van der Waerden, Algebra, Springer-Verlag, Berlin, 1966.zbMATHGoogle Scholar
  53. [53]
    H. Weyl, The classical groups, Princeton University Press, Princeton, New Jersey, 1939.Google Scholar
  54. [54]
    J. C. Willems, From time series to linear systems — Part I: Finite-dimensional linear time invariant systems. Automatica 22 (1986) 561–580.MathSciNetzbMATHCrossRefGoogle Scholar
  55. [55]
    J. C. Willems, From time series to linear systems — Part II: Exact modelling. Automatica 22 (1986) 675–694.MathSciNetzbMATHCrossRefGoogle Scholar
  56. [56]
    J. C. Willems, From time series to linear systems — Part III: Approximate modelling. Automatica 23 (1987) 87–115.MathSciNetzbMATHCrossRefGoogle Scholar
  57. [57]
    J. C. Willems, Models for dynamics, Dynamics Reported 2, (1989) 171–269.MathSciNetGoogle Scholar
  58. [58]
    J. C. Willems, Paradigms and puzzles in the theory of dynamical systems. IEEE Trans. Automat. Control 36 (1991) 259–294MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • M. Fliess
    • 1
  • S. T. Glad
    • 2
  1. 1.Laboratoire des Signaux et SystemesC.N.R.S.- E.S.E., Plateau du MoulonGif-sur-YvetteFrance
  2. 2.Department of Electrical EngineeringLinköping UniversityLinköpingSweden

Personalised recommendations