Myogenic (Stretch-Induced) and Flow-Regulated Tone of Human Pial Arteries

  • John A. Bevan
  • Rosemary D. Bevan
  • Alynn Klaasen
  • Paul Penar
  • Tina Poseno
  • Carrie L. Walters
Part of the Vascular Biomedicine book series (VB)


The normally functioning cerebral circulation effectively autoregulates, the vascular adjustments responsible for this prob­ably occurring in pial arteries of all sizes. It has been shown that changes in diameter of cerebral blood vessels of several animal species can take place in response to perivascular neural (constric­tor or dilator) activity, and through local mechanisms in the vessel wall responsive to intraluminal pressure and flow. A variety of fac­tors, mainly metabolic, influence the intracerebral vasculature (for referencesseeref. 1). In this chapter, we will describe experimental observations on the pressure and flow-initiated changes in vascu­lar tone of human pial arteries obtained during surgery. These ves­sels were transported to the Totman Laboratory from various Neurosurgical Centers for experimentation. Only the larger cere­bral arteries are influenced by sympathetic nerves. Dilator nerves influence has yet to be observed in human arteries of any size (seeChapter 6).2Thus, it would seem likely that stretch-induced myo­genic contraction and shear stress-initiated changes in tone are the dominant local regulating processes for human arteries.


Flow Response Arterial Diameter Smooth Muscle Tone Pressure Step Myogenic Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bevan, J. A. and Bevan, R. D. (1993) NIPS8,149–153.Google Scholar
  2. 2.
    Duckworth, J. W., Wellman, G. C., Walters, C. L. and Bevan, J. A. (1989) Circ. Res.65, 316–324.PubMedCrossRefGoogle Scholar
  3. 3.
    Zamir, M. (1977).J Gen. Physiol.69,449–461.CrossRefGoogle Scholar
  4. 4.
    Mayrowitz, H. N. and Roy, J. (1983) Am. J. Physiol. 245H1031–1038.Google Scholar
  5. 5.
    Halpern, W., Osol, G., and Coy, G. S. (1984) Ann. Biomed. Eng. 12463–479.PubMedCrossRefGoogle Scholar
  6. 6.
    Bevan, J. A. and Osher, J. V. (1972) Agents and Actions 2257–260.PubMedCrossRefGoogle Scholar
  7. 7.
    Mulvany, M. J. and Halpern, W. (1976) Nature (Lond.) 260617–619.CrossRefGoogle Scholar
  8. 8.
    Bevan, J. A., Joyce, E. H., and Wellman, G. C. (1988) Circ. Res. 63,980–985.PubMedCrossRefGoogle Scholar
  9. 9.
    Bevan, J. A. and Joyce, E. H. (1990) Am. J. Physiol. 258 (Heart Circ. Physiol. 27)H663–H668.Google Scholar
  10. 10.
    Bevan, J. A. (1994)Flow Dependent Regulation of Vascular Function in Health and Disease(Kaley, G., Rubanyi, G., and Bevan, J. A., eds.), Oxford University Press, New York, in press.Google Scholar
  11. 11.
    Bevan, J. A. and Wellman, G. C. (1993) Circ. Res.73,1188–1192.PubMedCrossRefGoogle Scholar
  12. 12.
    Bevan, J. A. (1991)The Resistance Vasculature(Bevan, J. A., Halpern, W., and Mulvany, M. J., eds.), Humana, Totowa, NJ, pp. 169–191.Google Scholar
  13. 13.
    Bevan, J. A. and Laher, I. (1991) FASEB J. 52267–2273.PubMedGoogle Scholar
  14. 14.
    Henrion, D., Laher, I., and Bevan, J. A. (1992) Circ. Res. 71339–345.PubMedCrossRefGoogle Scholar
  15. 15.
    Gaw, A. G. and Bevan, J. A. (1991)Resistance Arteries: Structure and Func­tion(Mulvany, M. J., Aalkjaer, C., Heagerty, A. M., Nyborg, N. C., and Strandgaard, S., eds.), Elsevier Science, The Netherlands, pp. 20–23.Google Scholar
  16. 16.
    Bevan, J. A. and Siegel, G. (1991) Blood Vessels 28552–556.PubMedGoogle Scholar
  17. 17.
    Siegel, G., Walter, A., Ruckborn, K., Buddecke, E., Schmidt, A., GustayssonH.and Lindman, B. (1991) Polymer J. 23697–708.CrossRefGoogle Scholar
  18. 18.
    Siegel, G., Walter, A., Schnalke, F., Schmidt, A., Buddecke, E., Loirand, G., and Stock, G. (1991) Z. Kardio l. 80(Suppl. 7)9–24.Google Scholar
  19. 19.
    Harper, A. M. (1975)Cerebral Vascular Diseases(Whisnant, J. P. and Sandok, B. A., eds.), Grune and Stratton, New York, pp. 27–35.Google Scholar
  20. 20.
    Hernandez, M. J., Raichle, M. E., and Stone, H. L. (1977)Neurogenic Con­trol of the Brain Circulation(Owman, C. and Edvinsson, L., eds.), Pergamon, New York, pp. 377–386.Google Scholar
  21. 21.
    Gross, P. M., Heistad, D. D., Strait, M. R., Marcus, M. L., and Brody, M. J. (1979) Circ. Res. 44288–294.PubMedCrossRefGoogle Scholar
  22. 22.
    MacKenzie, E. T., McGeorge, A. P., Graham, D.I.Fitch, W., Edvinsson, L., and Harper, A. M. (1979) Pfluegers Arch.378,189–195.CrossRefGoogle Scholar
  23. 23.
    Hirst, G. D. S. and Edwards, F. R. (1989) Physiol. Rev.69 546–595.PubMedGoogle Scholar
  24. 24.
    Harder, D. R., Sanchez-Ferrer, C., Kauser, K., Stekiel, W. J., and Rubanyi, G. M. (1989) Circ. Res.65,193–198.PubMedCrossRefGoogle Scholar
  25. 25.
    Brayden, J. E. and Wellman, G. C. (1989) J. Cereb. Blood Flow Metabol.9 256–263.CrossRefGoogle Scholar
  26. 26.
    Kuo, L., Chilian, W. M., and Davis, M. J. (1991) Am. J. Physiol. 261 (Heart Circ. Physiol. 30)H1706–H1715.PubMedGoogle Scholar
  27. 27.
    Duling, B. R. (1991)Resistance Arteries Structure and Function (Mulvany, M. J., Aalkjaer, C., Heagerty, A. M., Nyborg, N. C. B., and Strandgaard, S., eds.), Elsevier Science, Amsterdam, pp. 3–9.Google Scholar
  28. 28.
    Segal, S. S. (1992) NIPS7,152–156.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • John A. Bevan
  • Rosemary D. Bevan
  • Alynn Klaasen
  • Paul Penar
  • Tina Poseno
  • Carrie L. Walters

There are no affiliations available

Personalised recommendations