Advertisement

The Role of Mast Cells and Eosinophils in Asthma

  • Judy Anderson
  • William Anderson
  • Stephen I. Wasserman

Abstract

The mast cell plays a central role in reversible airway obstruction. Activation of this cell results in the early asthmatic response, and it also contributes to the late asthmatic response through the resultant airway edema, increased vascular permeability, and the effects of newly synthesized mediators of inflam mation, including cytokines. Through the action of these mediators, inflammatory cells collect in the airway mucosa of asthmatics. It is believed that the chronic nature of this inflammatory process serves as the underlying pathologic basis of enhanced airway reactivity. Much has been learned of mast cell physiology in recent years, especially that of human mast cells. The technique of bronchoalveolar lavage (BAL) and bronchial biopsy have allowed direct study of the inflammation in reactive airway disease and permitted definition of the mast cell’s role in this inflammatory response.

Keywords

Mast Cell Platelet Activate Factor Human Mast Cell Asthmatic Response Asthmatic Airway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lowell FC. Clinical aspects of eosinophilia in atopic disease. JAMA 1967; 202:875–878.PubMedCrossRefGoogle Scholar
  2. 2.
    Horn BR, Robin ED, Theodore J, and Van Kessel A. Total eosinophil counts in the management of bronchial asthma. N. Eng. J. Med. 1975; 292:1152–1155.CrossRefGoogle Scholar
  3. 3.
    Frigas E, Loegering DA, Solley GO, Farrow GM, and Gleich GJ. Elevated levels of eosinophil MBP in the sputum of patients with bronchial asthma. Mayo Clin. Proc. 1981; 56:345–353.PubMedGoogle Scholar
  4. 4.
    Filley WV, Holley KE, Kephart GM, and Gleich GH. Identification by immunofluorescence of eosinophil granule MBP in lung tissue of patients with bronchial asthma. Lancet 1982; i: 11–16.CrossRefGoogle Scholar
  5. 5.
    Fukida T, Ackerman SJ, Reed CE, Peters MS, Dunnette SL, and Gleich GJ. Calcium ionophore A23187 causes calcium-dependent cytolytic degranulation in human eosinophils. J. Immunol 1985; 135:1349–1359.Google Scholar
  6. 6.
    Durham SR and Kay AB. Eosinophils, bronchial hyperreactivity and LAR. Clin. Allergy 1985; 15:411–418.PubMedCrossRefGoogle Scholar
  7. 7.
    Bochner BS, Luscinskas FW, Gimbrone MA, Newman W, Sterbinsky SA, Dersc-Anthony CP, Klunk D, and Schleimer RP. Adhesion of human basophils, eosinophils and neutrophils to interleukin 1-activated human vascular endothelial cells: contributions of endothelial cell adhesion molecules. J. Exp. Med. 1991; 173:1553–1556.PubMedCrossRefGoogle Scholar
  8. 8.
    Elices MJ, Osborn L, Takada Y, Crouse C, Luhowsky S, Hemler ME, and Lobb RR. VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell 1990; 60:577.PubMedCrossRefGoogle Scholar
  9. 9.
    Walsh GM, Mermod JJ, Hartneil A, Kay AB, and Wardlaw AJ. Human eosinophil, but not neutrophil, adherence to IL-1-stimulated human umbilical vascular endothelial cells is alpha 4 beta 1 (very late antigen-4) dependent. J. Immunol. 1991; 146(10):3419–3423.PubMedGoogle Scholar
  10. 10.
    Gibson PG, Manning PJ, Girgis-Gabardo A, et al. Progenitors during late asthmatic response to allergen. J. Allergy Clin. Immunol. 1989; 83:233.Google Scholar
  11. 11.
    Otsuka H, Dolovich J, Befes AD, Telizyn S, Bienenstock J, and Denburg JA. Basophil progenitors and peripheral blood basophils in ragweed allergic patients. J. Allergy Clin. Immunol. 1986; 78:365–371.PubMedCrossRefGoogle Scholar
  12. 12.
    Capron M, Capron A, Dessaint JP, Torper G, Johansson SG, and Prin L. Fc receptors of IgE on human and rat eosinophils. J. Immunol. 1981; 126:2087–2092.PubMedGoogle Scholar
  13. 13.
    Kay AB. Inflammatory cells in allergic disease, in Mast Cells, Mediators and Disease (Holgate ST, ed.), Kluwer Academic, London, 1988; pp. 227–239.CrossRefGoogle Scholar
  14. 14.
    Wardlaw AJ, Moqbel R, Cromwell O, and Kay AB. PAF: a potent chemotactic and chemokinetic factor for human eosinophils. J. Clin. Invest. 1986; 78:1701–1706.PubMedCrossRefGoogle Scholar
  15. 15.
    Bruijnzeel PLB, Koendermann L, and Kok PTM. PAF (Paf acether)-induced LTC4 formation and luminol chemiluminescence by human eosinophils. Pharmacol. Res. Commun. 1986; 18:61s–69s.CrossRefGoogle Scholar
  16. 16.
    Djukanovic R, Roche WR, Wilson JW, Beasley CRW, Twentyman OP, Howarth PH, and Holgate ST. Mucosal inflammation in asthma. Am. Rev. Resp. Dis. 1990; 142:434–457.PubMedCrossRefGoogle Scholar
  17. 17.
    Wardlaw AJ, Moqbel R, Kurihara K, Walsh JM, and Kay AB. Eosinophils in allergic and nonallergic asthma, in Clinical Immunology and Allergy: The Allergic Basis of Asthma (Kay AB, ed.), Balliere Tindall, London, 1988; pp. 15–36.Google Scholar
  18. 18.
    Shaw RJ, Wash GM, Cromwell O, Moqbel R, Spry CJF, and Kay AB. Activated eosinophils generate SRS-A leukotrienes following IgG-dependent stimulation. Nature 1985; 316:150–152.PubMedCrossRefGoogle Scholar
  19. 19.
    Koenderman L and Bruijn PLB. Increased sensitivity of chemoattractant-induced chemiluminescence in eosinophils isolated from atopic patients. Immunology 1989; 67:534–536.PubMedGoogle Scholar
  20. 20.
    Aizawa T, Tamura G, Ohtsu H, and Takishima T. Eosinophil and neutrophil production of leukotriene C4 and B4: comparison of cells from asthmatic subjects and healthy donors. Ann. Allergy 1990; 64:287–292.PubMedGoogle Scholar
  21. 21.
    Metzger JW, Richerson HB, Worden K, Monick H, and Hunninghake GW. BAL of allergic asthmatic patients following allergen bronchoprovocation. Chest 1986; 89:477–483.PubMedCrossRefGoogle Scholar
  22. 22.
    De Monchy JGR, Kauffman HK, Venge P, et al. Bronchoalveolar eosinophilia during allergen induced LAR. Am. Rev. Resp. Dis. 1985; 131:373–376.PubMedGoogle Scholar
  23. 23.
    Ellis AG. The pathological anatomy of asthma. Am. J. Med. Sci. 1908; 136:407–429.CrossRefGoogle Scholar
  24. 24.
    Moore WF. Ciliary inhibition or destruction in tracheobronchial asthma, with notes on bronchoscopic treatment. Am. J. Med. Sci. 1925; 799–808.Google Scholar
  25. 25.
    Curschmann H. Ueber bronchiolitis exsudativa und ihr verhältniss zum asthma nervosum. Dtsch. Arch. Klin. Med. 1883; 32:1–34.Google Scholar
  26. 26.
    Leyden E. Zur Kenntnis des bronchial asthma. Arch. Path. Anal Phys. Klin. Med. 1972; 54:324–344.Google Scholar
  27. 27.
    Hoesslin VH. In: Das sputum. Springer, Stuttgart, Germany, 1921.Google Scholar
  28. 28.
    Naylor B. The shedding of the mucosa of the bronchial tree in asthma. Thorax 1962; 17:69–72.PubMedCrossRefGoogle Scholar
  29. 29.
    Laitinen, LA, Heino M, Laitinen A, Kava T, and Haahtela T. Damage of the airway epithelium and bronchial reactivity in patients with asthma. Am. Rev. Resp. Dis. 1985; 131:599–606.PubMedGoogle Scholar
  30. 30.
    Beasley R, Roche WR, Roberts JA, and Holgate ST. Cellular events in the bronchi in mild asthma and after bronchial provocation. Am. Rev. Resp. Dis. 1989; 139:806–817.PubMedCrossRefGoogle Scholar
  31. 31.
    Vange P and Håkansson L. Current understanding of the role of the eosinophil granulocyte in asthma. Clin. Exp. Allergy 1991; 21:31s–37s.CrossRefGoogle Scholar
  32. 32.
    Capron M, Leprovost C, Prin L, et al. Immunoglobulin-mediated activation of eosinophils, in Eosinophils in Asthma (Morely J and Colditz I, eds.), Academic, London, 1989.Google Scholar
  33. 33.
    Peters, MS, Rodriguez M, and Gleich GJ. Localization of human eosinophil granular MBP, ECP, and EDN by immunoelectron microscopy. Lab. Invest. 1986; 54:656–662.PubMedGoogle Scholar
  34. 34.
    Wasmoen TL, Bell MP, Loegering DA, Gleich GJ, et al. Biochemical and amino acid sequence analysis of human eosinophil granule MBP. J.Biol. Chem. 1988; 263:12,559-12,563.Google Scholar
  35. 35.
    Barker RL, Gleich GJ, and Pease LR. Acidic precursor revealed in human eosinophil granule MBP cDNA. J. Exp. Med. 1988; 168:1493–1498.PubMedCrossRefGoogle Scholar
  36. 36.
    Venge P, Dahl R, Hållgren R, and Olsson I. Cationic proteins of human eosinophils and their role in inflammatory reaction, in The Eosinophil in Health and Disease (Mahoud AAF and Austen KF, eds.), Grune and Stratton, New York, 1989; pp. 131–142.Google Scholar
  37. 37.
    Olsson I. The cytokinetic network. J. Int. Med. 1993; 233:103–105.CrossRefGoogle Scholar
  38. 38.
    Slifman NR, Loegering DA, McKean M, and Gleich GJ. Ribonuclease activity associated with human EDN and ECP. J. Immunol. 1986; 137:2913–2917.PubMedGoogle Scholar
  39. 39.
    Sorrentino S, Tucker GK, and Glitz D. Purification and characterization of a ribonuclease from human liver. J. Biol. Chem. 1988; 263:16,125-16,131.Google Scholar
  40. 40.
    Bientema JJ, Hofsteenge J, Iwama M, Moritaa T, Ohgi K, Irie M, et al. Amino acid sequence of non-secretory ribonuclease of human urine. Biochemistry 1988; 27:4530–4538.CrossRefGoogle Scholar
  41. 41.
    Bolscher BGJM, Plat H, and Wever R. Some properties of human EPO, a comparison with other peroxidases. Biochem. Biophys. Acta. 1984; 784:177–186.PubMedCrossRefGoogle Scholar
  42. 42.
    Carlson MGC, Peterson CGB, and Venge P. Human EPO: purification and characterization. J. Immunol. 1985; 134:1875–1879.PubMedGoogle Scholar
  43. 43.
    Ten RM, Pease LR, McKean DJ, Bell MP, and Gleich GJ. Molecular cloning of EPO. Evidence for existence of peroxidase multigene family. J. Exp. Med. 1989; 169:1757–1769.PubMedCrossRefGoogle Scholar
  44. 44.
    Belding ME, Klebenoff SJ, and Ray CG. Peroxidase mediated virucidal systems. Science 1970; 167:195–196.PubMedCrossRefGoogle Scholar
  45. 45.
    Jong EC, Nenderson WR, and Klebanoff SJ. Bactericidal activity of EPO. J. Immunol. 1980; 124:1378–1382.PubMedGoogle Scholar
  46. 46.
    Jong EC and Klebanoff SJ. Eosinophil mediated tumor-cell cytotoxicity: role of the peroxidase system. J. Immunol. 1980; 124:1949–1953.Google Scholar
  47. 47.
    Sårnstrand B, Westergren-Thorsson G, Hernås J, et al. ECP and transforming growth factor-A stimulates synthesis of hyaluron and proteoglycan in human fibroblast cultures, in Fifth International Colloquium on Pulmonary Fibrosis (Cordier JF, ed.), Lyon, France, 1988; p. 39.Google Scholar
  48. 48.
    Hasti AT, Loegering DA, Gleich GJ, and Kueppers F. The effect of purified human eosinophil MBP on mammalian ciliary activity. Am. Rev. Resp. Dis. 1989; 135:848–905.Google Scholar
  49. 49.
    Jacoby DB, Ueki IF, Widdicombe JH, Loegering DA, Gleich GJ, and Nadel JA. Effect of human eosinophil MBP on ion transport in dog trachea epithelium. Am. Rev. Resp. Dis. 1988; 137:13–16.CrossRefGoogle Scholar
  50. 50.
    Frigas E and Loegering DA. Cytotoxic effects of eosinophil MBP on tracheal epithelium. Lab. Invest. 1980; 42:35–42.Google Scholar
  51. 51.
    Agosti JM, Altman LC, Ayars GH, Loegering DA, Gleich GJ, and Klebanoff SJ. The injurious effect of EOP, hydrogen peroxide, and halides on pneumocytes in vitro. J. Allergy Clin. Immunol. 1987; 79:496–504.PubMedCrossRefGoogle Scholar
  52. 52.
    Motojima S, Frigas E, Loegering DA, and Gleich GJ. Toxicity of ECP for guineapig tracheal epithelium in vitro. Am. Rev. Resp. Dis. 1989; 139:801–805.PubMedCrossRefGoogle Scholar
  53. 53.
    Samoszuk MK, Perterson A, Gidanian F, and Rietveld C. Cytophlic and cytotoxic properties of human eosinophil peroxidase plus MBP. Am. J. Path. 1988; 132:455–460.Google Scholar
  54. 54.
    Dunnill, MS, Massarella, GR, and Anderson JA. A comparison of the quantitative anatomy of the bronchi in normal subjects, in status asthmaticus, in chronic bronchitis, and in emphysema. Thorax 1969; 24:176–179.PubMedCrossRefGoogle Scholar
  55. 55.
    Kountz, WB and Alexander HL. Death from bronchial asthma. Arch. Pathol. 1928; 1003–1019.Google Scholar
  56. 56.
    Michael PP and Rowe AH. Pathology of two fatal cases of asthma. J. Allergy 1935; 6:150–174.CrossRefGoogle Scholar
  57. 57.
    Gough J. Postmortem differences in asthma and chronic bronchitis. Acta. Allergol. 1961; 16:391–399.PubMedCrossRefGoogle Scholar
  58. 58.
    MacDonald IG. The local and constitutional pathology of bronchial asthma. Ann. Intern. Med. 1933; 6:253–277.Google Scholar
  59. 59.
    Reid LM, Gleich GI, Hogg J, Kleinerman J, and Laitinen LA. Pathology, in The Role of the Inflammatory Processes in Airway Hyperresponsiveness (Holgate ST, ed.), Blackwell Scientific, Oxford, UK 1989; pp. 36–79.Google Scholar
  60. 60.
    Huber HL and Loessler KK. Pathology of asthma. Arch. Intern. Med. 1922; 30:689–760.CrossRefGoogle Scholar
  61. 61.
    Koch-Weser J. Beta adrenergic blockade and circulating eosinophils. Arch. Intern. Med. 1968; 121:255–258.PubMedCrossRefGoogle Scholar
  62. 62.
    Ohman JL Jr, Lawrence M, and Lowell FC. Effects of propanalol on the isoproteranol, responses of cortisol, isoproteranol, aminophylline. J. Allergy Clin. Immunol. 1972; 50:151–156.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Judy Anderson
    • 1
  • William Anderson
    • 2
  • Stephen I. Wasserman
    • 2
  1. 1.University of CaliforniaSan DiegoUSA
  2. 2.University of California School of MedicineSan DiegoUSA

Personalised recommendations