Skip to main content

Diagnosis and Management of Exercise-Induced Asthma

  • Chapter
Bronchial Asthma

Abstract

“Exercise-induced asthma (EIA) is the name used to describe the transitory increase in airways resistance which follows vigorous exercise in most patients with asthma” (1). Arateus of Cappodocia (2), in ancient times, recognized its existence but it was Jones who gave the first modern clinical description of EIA in children thirty years ago (3). EIA occurs in 70–80% of clinically recognized asthmatic subjects who perform exercise under standardized conditions in a laboratory (47). A lower prevalence has been found in field studies where the diagnosis of asthma has been made on the basis of answers to a questionnaire (8). In the general population the prevalence of EIA is reported as being between 4–12.2% (912).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson SD. Exercise-induced asthma, in Allergy: Principles and Practice, 3rd ed., vol 2, (Middleton JE, Reed C, Ellis E, Adkinson NF, and Yunginger JW, eds.), CV Mosby, St. Louis, MO, 1988; pp. 1156–1175.

    Google Scholar 

  2. Adams F. The extant works of Arateus, The Cappadocian (Adams F, ed.), Sydenham Society, London, 1856.

    Google Scholar 

  3. Jones RS, Buston MH, and Wharton MF. The effect of exercise on ventilatory fonction in the child with asthma. Br. J. Dis. Chest 1962; 56:78–86.

    PubMed  CAS  Google Scholar 

  4. Anderson SD, Silverman M, Godfrey S, and Konig P. Exercise-induced asthma: a review. Br. J. Dis. Chest 1975; 69:1–39.

    PubMed  CAS  Google Scholar 

  5. Cropp GJ. Grading, time course, and incidence of exercise-induced airway obstruction and hyperinflation in asthmatic children. Pediatrics 1975; 56:868–879.

    PubMed  CAS  Google Scholar 

  6. Kattan M, Keens TG, Mellis CM, and Levison H. The response to exercise in normal and asthmatic children. J. Pediatr. 1978; 92:718–7

    PubMed  CAS  Google Scholar 

  7. Anderson SD, Seale JP, Ferris L, Schoeffel RE, and Lindsay DA. An evaluation of pharmacotherapy for exercise-induced asthma. J. Allergy Clin. Immunol. 1979; 64:612–624.

    PubMed  CAS  Google Scholar 

  8. Terblanche E and Stewart RI. The prevalence of exercise-induced bronchoconstriction in Cape Town schoolchildren. SAMJ 1990; 78:744–747.

    PubMed  CAS  Google Scholar 

  9. Karjalainen J. Exercise response in 404 young men with asthma: no evidence for a late asthmatic reaction. Thorax 1991; 46:100–104.

    PubMed  CAS  Google Scholar 

  10. Burr ML, Butland BK, King S, Vaughan-Williams E. Changes in asthma prevalence: two surveys 15 years apart. Arch. Dis. Child. 1989; 64:1452–14

    PubMed  CAS  Google Scholar 

  11. Burr ML, Eldridge BA, and Borysiewicz LK. Peak expiratory flow rates before and after exercise in schoolchildren. Arch. Dis. Child. 1974; 49:923–9

    PubMed  CAS  Google Scholar 

  12. Barry DMJ, Burr ML, and Limb ES. Prevalence of asthma among 12 year old children in New Zealand and South Wales: a comparative survey. Thorax 1991; 46:405–409.

    PubMed  CAS  Google Scholar 

  13. Linna O. Influence of baseline lung function on exercise-induced response in childhood asthma. Acta Paediatr. Scand. 1990; 79:664–6

    PubMed  CAS  Google Scholar 

  14. Anderson SD and Schoeffel RE. Standardization of exercise testing in the asthmatic patient: a challenge in itself, in Airway Responsiveness: Measurement and Interpretation. Proceedings of a Workshop (Hargreave FE and Woolcock AJ, eds.), Astra Pharmaceuticals Canada Ltd., Ontario, Canada, 1985; pp. 51–59.

    Google Scholar 

  15. Anderson SD, Silverman M, and Walker SR. Metabolic and ventilatory changes in asthmatic patients during and after exercise. Thorax 1972; 27:718–725.

    PubMed  CAS  Google Scholar 

  16. Bye PTP, Anderson SD, Daviskas E, Marty JJ, and Sampson D. Plasma cyclic AMP levels in response to exercise and terbutaline sulphate aerosol in normal and asthmatic patients. Eur. J. Resp. Dis. 1980; 61:287–297.

    CAS  Google Scholar 

  17. Anderson SD, Mc Evoy JDS, and Bianco S. Changes in lung volumes and airway resistance after exercise in asthmatic subjects. Am. Rev. Resp. Dis. 1972; 106:30–37.

    PubMed  CAS  Google Scholar 

  18. Anderson SD. Exercise-induced asthma. The state of the art. Chest 1985; 87S:191S–295S.

    Google Scholar 

  19. Edmunds A, Tooley M, and Godfrey S. The refractory period after exercise-induced asthma: its duration and relation to the severity of exercise. Am. Rev. Resp. Dis. 1978; 117:247–254.

    PubMed  CAS  Google Scholar 

  20. Margolskee DJ, Bigby BG, and Boushey HA. Indomethacin blocks airway tolerance to repetitive exercise but not to eucapnic hyperpnea in asthmatic subjects. Am. Rev. Resp. Dis. 1988; 137:842–846.

    PubMed  CAS  Google Scholar 

  21. O’Byrne PM and Jones GL. The effect of indomethacin on exercise-induced bronchoconstriction and refractoriness after exercise. Am. Rev. Resp. Dis. 1986; 134:69–72.

    PubMed  Google Scholar 

  22. Anderson SD. Is there a unifying hypothesis for exercise-induced asthma. J. Allergy Clin. Immunol. 1984; 73:660–665.

    PubMed  CAS  Google Scholar 

  23. McFadden ER. Hypothesis: exercise-induced asthma as a vascular phenomenon. Lancet 1990; 335:880–882.

    PubMed  Google Scholar 

  24. Letters. Exercise-induced asthma as a vascular phenomenon. Lancet 1990; 335:1410–1412.

    Google Scholar 

  25. Anderson SD, Daviskas E, and Smith CM. Exercise-induced asthma: a difference in opinion regarding the stimulus. Allergy Proc. 1989; 10:215–226.

    PubMed  CAS  Google Scholar 

  26. Eggleston PA, Rosenthal RR, Anderson SD, Anderton R, Bierman CW, Bleecker ER, Chai H, Cropp GJA, Johnson JD, Konig P, Morse J, Smith LJ, Summers RJ, and Trautlein JJ. Guidelines for the methodology of exercise challenge testing of asthmatics. J. Allergy Clin. Immunol. 1979; 64:642–645.

    PubMed  CAS  Google Scholar 

  27. Cropp GJA. The exercise bronchoprovocation test: Standardization of procedures and evaluation of response. J. Allergy Clin. Immunol. 1979; 64:627–633.

    PubMed  CAS  Google Scholar 

  28. Anderson SD. Methodology for identifying and assessing exercise-induced asthma, in Bronchial Provocation Tests (Fish J and Hargreave FE, eds.), Marcel Dekker, New York, 1994.

    Google Scholar 

  29. Konig P, Hordvik NL, and Kreutz C. The preventative effect and duration of action of nedocromil sodium and cromolyn sodium on exercise-induced asthma (EIA) in adults. J. Allergy Clin. Immunol. 1987; 79:64–68.

    PubMed  CAS  Google Scholar 

  30. Anderson SD, Rodwell LT, Du Toit J, and Young IH. Duration of protection of inhaled salmeterol in exercise-induced asthma. Chest 1991; 100:1254–1260.

    PubMed  CAS  Google Scholar 

  31. Woolley M, Anderson SD, and Quigley BM. Duration of protective effect of terbutaline sulfate and cromolyn sodium alone and in combination on exercise-induced asthma. Chest 1990; 97:39–45.

    PubMed  CAS  Google Scholar 

  32. Henriksen JM and Dahl R. Effects of inhaled budesonide alone and in combination with low-dose terbutaline in children with exercise-induced asthma. Am. Rev. Resp. Dis. 1983; 128:993–997.

    PubMed  CAS  Google Scholar 

  33. Duffy P and Phillips YY. Caffeine consumption decreases the response to bronchoprovocation challenge with dry gas hyperventilation. Chest 1991; 99:1374–1377.

    PubMed  CAS  Google Scholar 

  34. Anderson SD, Schoeffel RE, Follet R, Perry CP, Daviskas E, and Kendall M. Sensitivity to heat and water loss at rest and during exercise in asthmatic patients. Eur. J. Resp. Dis. 1982; 63:459–471.

    CAS  Google Scholar 

  35. Silverman M and Anderson SD. Standardization of exercise tests in asthmatic children. Arch. Dis. Child. 1972; 47:882–889.

    PubMed  CAS  Google Scholar 

  36. O’Cain CF, Dowling NB, Slutsky AS, Hensley MJ, Strohl KP, McFadden ER, and Ingram RH. Airway effects of respiratory heat loss in normal subjects. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 1980; 49:875–880.

    Google Scholar 

  37. Henriksen JM. Reproducibility of exercise-induced asthma in children. Allergy 1986; 41:225–231.

    PubMed  CAS  Google Scholar 

  38. Assoufi BK, Dally MB, Newman-Taylor AJ, and Denison DM. Cold air test: a simplified standard method for airway reactivity. Bull. Eur. Physiopathol. Resp. 1986; 22:349–357.

    CAS  Google Scholar 

  39. O’Byrne PM, Thomson NC, Morris M, Roberts RS, Daniel EE, and Hargreave FE. The protective effect of inhaled chlorpheniramine and atropine on bronchoconstriction stimulated by airway cooling. Am. Rev. Resp. Dis. 1983; 128:611–617.

    PubMed  Google Scholar 

  40. Smith CM and Anderson SD. Hyperosmolarity as the stimulus to asthma induced by hyperventilation? J. Allergy Clin. Immunol. 1986; 77:729–736.

    PubMed  CAS  Google Scholar 

  41. Latimer KM, O’Byrne PM, Morris MM, Roberts R, and Hargreave FE. Bronchoconstriction stimulated by airway cooling. Better protection with combined inhalation of terbutaline sulphate and cromolyn sodium than with either alone. Am. Rev. Resp. Dis. 1983; 128:440–443.

    PubMed  CAS  Google Scholar 

  42. Smith CM, Anderson SD, and Seale JP. The duration of the combination of fenoterol hydrobromide and ipratropium bromide in protecting against asthma provoked by hyperpnea. Chest 1988; 94:709–717.

    PubMed  CAS  Google Scholar 

  43. Phillips YY, Jaeger JJ, Laube BL, and Rosenthal RR. Eucapnic voluntary hyper-ventilation of compressed gas mixture. A simple system for bronchial challenge by respiratory heat loss. Am. Rev. Resp. Dis. 1985; 131:31–35.

    PubMed  CAS  Google Scholar 

  44. Anderson SD. Exercise-induced asthma, in Allergy: Principles and Practice, 4th ed. vol 2, (Middleton E, Reed C, Ellis E, Adkinson NF, and Yunginger JW, eds.), CV Mosby, St. Louis, MO, 1993; 1343–1368.

    Google Scholar 

  45. Smith CM and Anderson SD. Inhalation provocation tests using non-isotonic aerosols. J. Allergy Clin. Immunol. 1989; 4:781–790.

    Google Scholar 

  46. Smith CM and Anderson SD. An investigation of the hyperosmolar stimulus to exercise-induced asthma. Aust. NZJ. Med. 1987; 17:A513.

    Google Scholar 

  47. Smith CM and Anderson SD. Inhalational challenge using hypertonic saline in asthmatic subjects: a comparison with responses to hyperpnoea, methacholine and water. Eur. Resp. J. 1990; 3:144–151.

    CAS  Google Scholar 

  48. Kivity S, Greif J, Reisner B, Fireman E, and Topilsky M. Bronchial inhalation challenge with ultrasonically nebulized saline; comparison to exercise-induced asthma. Ann. Allergy 1986; 57:355–358.

    PubMed  CAS  Google Scholar 

  49. Backer V, Dirksen A, Bach-Mortensen N, Hansen KK, Laursen EM, and Wendelboe D. The distribution of bronchial responsiveness to histamine and exercise in 527 children and adolescents. J. Allergy Clin. Immunol. 1991; 88:68–76.

    CAS  Google Scholar 

  50. Clough JB, Hutchinson SA, Williams JD, and Holgate ST. Airway response to exercise and methacholine in children with respiratory symptoms. Arch. Dis. Child. 1991; 66:579–5

    CAS  Google Scholar 

  51. Freeman W, Weir DC, Sapiano SB, Whitehead JE, Burge PS, and Cayton RM. The twenty-metre shuttle-running test: a combined test for maximal oxygen uptake and exercise-induced asthma? Resp. Med. 1990; 84:31–35.

    CAS  Google Scholar 

  52. Godfrey S, Springer C, Noviski N, Maayan Ch, and Avital A. Exercise but not methacholine differentiates asthma from chronic lung disease in children. Thorax 1991; 46:488–492.

    PubMed  CAS  Google Scholar 

  53. Leger LA and Lambert JA. A maximal multistage 20-m shuttle run test to predict VO2 max. Eur. J. Appl. Physiol. 1982; 49:1–12.

    CAS  Google Scholar 

  54. van Mechelin W, Hlobil H, and Kemper HCG. Validation of two running tests as estimates of maximal aerobic power in children. Eur. J. Appl. Physiol. 1986; 55:503–506.

    Google Scholar 

  55. Banner AS, Green J, and O’Connor M. Relation of respiratory water loss to coughing after exercise. N. Eng. J. Med. 1984; 311:883–886.

    CAS  Google Scholar 

  56. Banner AS, Chausow A, and Green J. The tussive effect of hyperpnea with cold air. Am. Rev. Resp. Dis. 1985; 131:362–367.

    PubMed  CAS  Google Scholar 

  57. Heath GW, Ford ES, Craven TE, Macera CA, Jackson KL, and Pate RR. Exercise and the incidence of upper respiratory tract infections. Med. Sci. Sports Exerc. 1991; 23:152–157.

    PubMed  CAS  Google Scholar 

  58. Schaefer O, Eaton RDP, Timmermans FJW, and Hildes JA. Respiratory function impairment and cardiopulmonary consequences in long-term residents of the Canadian Arctic. Can. Med. Assoc. J. 1980; 123:997–1004.

    PubMed  CAS  Google Scholar 

  59. Katz RM, Siegel SC, and Rachelefsky GS. Chronic cough in athletes. Clin. Rev. Allergy 1988; 6:431–441.

    PubMed  CAS  Google Scholar 

  60. Bierman CW and Spiro SG. Characterization of the late response in exercise-induced asthma. J. Allergy Clin. Immunol. 1984; 74:701–706.

    PubMed  CAS  Google Scholar 

  61. Iikura Y, Inui H, Nagakura T, and Lee TH. Factors predisposing to exercise-induced late asthmatic responses. J. Allergy Clin. Immunol. 1985; 75:285–289.

    PubMed  CAS  Google Scholar 

  62. Boulet LP, Legris C, and Turcotte H. Prevalence and characteristics of late asthmatic responses to exercise in an adult population. J. Allergy Clin. Immunol. 1986; 77:163A.

    Google Scholar 

  63. Speelberg B, van den Berg, NJ, Ooshoek CHA, Verhoeff NPLG, and van den Brink WTJ. Immediate and late asthmatic responses induced by exercise in patients with reversible airflow limitation. Eur. Resp. J. 1989; 2:402–408.

    CAS  Google Scholar 

  64. Zawadski DK, Lenner KA, and McFadden ER. Re-examination of the late asthmatic response to exercise. Am. Rev. Resp. Dis. 1988; 137:837–841.

    PubMed  CAS  Google Scholar 

  65. Rubinstein I, Levison H, Slutsky AS, Hak H, Wells J, Zamel N, and Rebuck AS. Immediate and delayed bronchoconstriction after exercise in patients with asthma. N. Eng. J. Med. 1987; 317:482–185.

    CAS  Google Scholar 

  66. Dahl R and Henriksen JM. Development of late asthmatic reactions after allergen or exercise challenge tests. Eur. J. Resp. Dis. 1980; 61:320–324.

    CAS  Google Scholar 

  67. Varga E-M, Eber E, and Zach MS. Cold air challenge for measuring airway reactivity in children: lack of a late asthmatic reaction. Lung 1990; 168:267–272.

    PubMed  CAS  Google Scholar 

  68. Hahn AG, Nogrady SG, Tumulty D McA, Lawrence SR, and Morton AR. Histamine reactivity during the refractory period after exercise induced asthma. Thorax 1984; 39:919–923.

    PubMed  CAS  Google Scholar 

  69. Malo JL, Cartier A, L’Archeveque J, Ghezzo H, and Martin RR. Bronchoconstriction due to isocapnic cold air inhalation minimally influences bronchial hyperresponsiveness to methacholine in asthmatic subjects. Bull. Eur. Physiopathol. Resp. 1986; 22:473–477.

    CAS  Google Scholar 

  70. Magnussen H, Reuss G, and Jorres R. Airway response to methacholine during exercise induced refractoriness in asthma. Thorax 1986; 41:667–670.

    PubMed  CAS  Google Scholar 

  71. Boner AL, Sette L, Piacentini G, Peroni D, and Warner JO. Exercise-induced biphasic responses and methacholine reactivity in asthma. Ann. Allergy 1990; 65:284–286.

    PubMed  CAS  Google Scholar 

  72. Freedman S, Tattersfield AE, and Pride NB. Changes in lung mechanics during asthma induced by exercise. J. Appl. Physiol. 1975; 38:974–982.

    PubMed  CAS  Google Scholar 

  73. Eber E, Varga E-M, and Zach MS. Cold air challenge of airway reactivity in children: A correlation of transcutaneously measured oxygen tension and conventional lung functions. Pediatr. Pulmonol. 1991; 10:273–277.

    PubMed  CAS  Google Scholar 

  74. Schoeffel RE, Anderson SD, Gillam I, and Lindsay DA. Multiple exercise and histamine challenge in asthmatic patients. Thorax 1980; 35:164–170.

    PubMed  CAS  Google Scholar 

  75. Gillam I, Landau LI, Phelan PD, and Chennells HD. The variability of bronchoconstriction after repeated and prolonged exercise tests in asthmatics, in The Asthmatic Child in Play and Sport (Oseid S and Edwards A, eds.), Pitman Medical. London, 1983; pp. 92–106.

    Google Scholar 

  76. Konig P, Eggleston PA, and Serby CW. Comparison of oral and inhaled metaproterenol for prevention of exercise-induced asthma. Clin. Allergy 1981; 11:597–60

    Google Scholar 

  77. Seale JP, Anderson SD, and Linday DA. A comparison of oral theophylline and oral salbutamol in exercise-induced asthma. Aust. NZJ. Med. 1977; 7:270–274.

    CAS  Google Scholar 

  78. Anderson SD, Seale JP, Rozea P, Bandler L, Theobald G, and Lindsay DA. Inhaled and oral salbutamol in exercise-induced asthma. Am. Rev. Resp. Dis. 1976; 114:493–500.

    PubMed  CAS  Google Scholar 

  79. Henriksen JM. Effect of inhalation of corticosteroids on exercise induced asthma: randomised double blind crossover study of budesonide in asthmatic children. Br. Med. J. 1985; 291:248–249.

    CAS  Google Scholar 

  80. Poppius H, Sovijarvi ARA, and Tammilehto L. Lack of protective effect of high-dose ipratropium on bronchoconstriction following exercise with cold air breathing in patients with mild asthma. Eur. J. Resp. Dis. 1986; 68:319–325.

    CAS  Google Scholar 

  81. Patel KR. Terfenadine in exercise-induced asthma. Br. Med. J. 1984; 285:1496–1497.

    Google Scholar 

  82. Finnerty JP and Holgate ST. Evidence for the roles of histamine and prostaglandins as mediators in exercise-induced asthma: the inhibitory effect of terfenadine and flurbiprofen alone and in combination. Eur. Resp. J. 1990; 3:540–547.

    CAS  Google Scholar 

  83. Merland N, Cartier A, L’Archeveque J, Ghezzo H, and Malo J-L. Theophylline minimally inhibits bronchoconstriction induced by dry cold air inhalation in asthmatic subjects. Am. Rev. Resp. Dis. 1988; 137:1304–1308.

    PubMed  CAS  Google Scholar 

  84. Patel KR and Wall RT. Dose-duration effect of sodium cromoglycate aerosol in exercise-induced asthma. Eur. J. Resp. Dis. 1986; 69:256–260.

    CAS  Google Scholar 

  85. Deffebach ME, Charan NB, Lakshminarayan S, and Butler J. The bronchial circulation. Small, but a vital attribute of the lung. State of the Art. Am. Rev. Resp. Dis. 1987; 135:463–481.

    PubMed  CAS  Google Scholar 

  86. Richards R, Fowler C, Simpson SF, Renwick AG, and Holgate ST. Deep inspiration increases the absorption of inhaled sodium cromoglycate. Br. J. Clin. Pharmacol. 1989; 27:861–865.

    PubMed  CAS  Google Scholar 

  87. Schoeffel RE, Anderson SD, and Lindsay DA. Sodium cromoglycate as a pressurized aerosol (Vicrom) in exercise-induced asthma. Aust. NZ J. Med. 1983; 13:157–161.

    CAS  Google Scholar 

  88. Tullett WM, Tan KM, Wall RT, and Patel KR. Dose-response effect of sodium cromoglycate pressurised aerosol in exercise induced asthma. Thorax 1985; 40:41–44.

    PubMed  CAS  Google Scholar 

  89. Albazzaz MK, Neale MG, and Patel KR. Dose-response study of nebulised nedocromil sodium in exercise induced asthma. Thorax 1989; 44:816–819.

    PubMed  CAS  Google Scholar 

  90. Patessio A, Podda A, Carone M, Trombetta N, and Donner CF. Protective effect and duration of action of formoterol aerosol on exercise-induced asthma. Eur. Resp. J. 1991; 4:296–300.

    CAS  Google Scholar 

  91. Bianco S, Vaghi A, Robuschi M, and Pasargiklian M. Prevention of exercise-induced bronchoconstriction by inhaled furosemide. Lancet 1988; 30:252–255.

    Google Scholar 

  92. Feather IR and Olson LG. Furosemide antagonises exercise-induced but not histamine-induced bronchospasm. Aust. NZJ. Med. 1991; 21:7–10.

    CAS  Google Scholar 

  93. Corris PA, Nariman S, and Gibson GJ. Nifedipine in the prevention of asthma induced by exercise and histamine. Am. Rev. Resp. Dis. 1983; 128:991–992.

    PubMed  CAS  Google Scholar 

  94. Ben-Dov I, Sue Y, Hansen JE, and Wasserman K. Bronchodilatation and attenuation of exercise-induced bronchospasm by PY108-068: A new calcium antagonist. Am. Rev. Resp. Dis. 1986; 133:116–119.

    PubMed  CAS  Google Scholar 

  95. Patel KR and Peers E. Felopidine, a new calcium antagonist, modifies exercise-induced asthma. Am. Rev. Resp. Dis. 1988; 138:54–56.

    PubMed  CAS  Google Scholar 

  96. Rafferty P, Varley JG, Edwards JS, and Holgate ST. Inhibition of exercise-induced asthma by nifedipine: a dose-response study. Br. J. Clin. Pharmac. 1987; 24:479–484.

    CAS  Google Scholar 

  97. Waiden SM, Bleeker ER, Chahal K, Britt EJ, Mason P, and Permutt S. Effect of alpha-adrenergic blockade on exercise-induced asthma and conditioned cold air. Am. Rev. Resp. Dis. 1984; 130:357.

    Google Scholar 

  98. Barnes PJ, Wilson NM, and Vickers H. Prazosin, an alpha1-adrenoceptor antagonist, partially inhibits exercise-induced asthma. J. Allergy Clin. Immunol. 1981; 68:411–415.

    PubMed  CAS  Google Scholar 

  99. Tullett WM and Patel KR. Isosorbide dinitrate and isoxsuprine in exercise induced asthma. Br. Med. J. 1983; 286:1934–1935.

    CAS  Google Scholar 

  100. Seale JP, Anderson SD, and Lindsay DA. A trial of an alpha-adrenoreceptor blocking drug (indoramin) in exercise-induced bronchoconstriction. Scand. J. Resp. Dis. 1976; 57:261–266.

    CAS  Google Scholar 

  101. Hendeles L, Hill M, Harman E, Moore P, and Peiper J. Dose-response in inhaled diltiazem on airway reactivity to methacholine and exercise in subjects with mild asthma. Clin. Pharmacol. Ther. 1988; 43:387–392.

    PubMed  CAS  Google Scholar 

  102. Grubbe RE, Hopp R, Dave NK, Brennan B, Bewtra A, and Townley R. Effect of inhaled furosemide on the bronchial response to methacholine and cold-air hyperventilation challenges. J. Allergy Clin. Immunol. 1990; 85:881–884.

    PubMed  CAS  Google Scholar 

  103. Wiebicke W, Poynter A, Montgomery M, Chernick V, and Pasterkamp H. Effect of terfenadine on the response to exercise and cold air in asthma. Pediatr. Pulmonol. 1988; 4:225–2

    PubMed  CAS  Google Scholar 

  104. Christopher MA, Wyzan D, Harman E, and Hendeles L. The effects of nalmefene, a potent oral opiate antagonist, on exercise-induced bronchospasm. J. Allergy Clin. Immunol. 1988; 82:1037–1041.

    PubMed  CAS  Google Scholar 

  105. Gaillard RC, Bachman M, Rochat T, Egger D, De Haller R, and Junod AF. Exercise induced asthma and endogenous opioids. Thorax 1986; 41:350–354.

    PubMed  CAS  Google Scholar 

  106. Anderson SD, Daviskas E, Schoeffel RE, and Unger SF. Prevention of severe exercise-induced asthma with hot humid air. Lancet 1979; 2:629.

    PubMed  CAS  Google Scholar 

  107. Strauss RH, McFadden ER, Ingram RH, Deal EC, Jaegar JJ, and Steams D. Influence of heat and humidity on the airway obstruction induced by exercise in asthma. J. Clin. Invest. 1978; 61:433–440.

    PubMed  CAS  Google Scholar 

  108. Chen WY and Horton DJ. Heat and water loss from the airways and exercise-induced asthma. Respiration 1977; 34:305–313.

    PubMed  CAS  Google Scholar 

  109. Eschenbacher WL and Sheppard D. Respiratory heat loss is not the sole stimulus for bronchoconstriction induced by isocapnic hyperpnea with dry air. Am. Rev. Resp. Dis. 1985; 131:894–901.

    PubMed  CAS  Google Scholar 

  110. Hahn A, Anderson SD, Morton AR, Black JL, and Fitch KD. A re-interpretation of the effect of temperature and water content of the inspired air in exercise-induced asthma. Am. Rev. Resp. Dis. 1984; 130:575–579.

    PubMed  CAS  Google Scholar 

  111. Eiken O, Kaiser P, Holmer I, and Baer R. Physiological effects of a mouth-borne heat exchanger during heavy exercise in a cold environment. Ergonomics 1989; 32:645–653.

    PubMed  CAS  Google Scholar 

  112. Gravelyn TR, Capper M, and Eschenbacher WL. Effectiveness of a heat and moisture exchanger in preventing hyperpnoea induced bronchoconstriction in subjects with asthma. Thorax 1987; 42:877–880.

    PubMed  CAS  Google Scholar 

  113. Brenner AM, Weiser PC, Krogh LA, and Loren ML. Effectiveness of a portable face mask in attenuating exercise-induced asthma. JAMA 1980; 264(19):2196–2198.

    Google Scholar 

  114. Schachter EN, Lach E, and Lee M. The protective effect of a cold weather mask on exercise-induced asthma. Ann. Allergy 1981; 46:12–16.

    PubMed  CAS  Google Scholar 

  115. Mangla PK and Menon MPS. Effect of nasal and oral breathing on exercise-induced asthma. Clin. Allergy 1981; 11:433–439.

    PubMed  CAS  Google Scholar 

  116. Shturman-Ellstein R, Zeballos RJ, Buckley JM, and Souhrada JF. The beneficial effect of nasal breathing on exercise-induced bronchoconstriction. Am. Rev. Resp. Dis. 1978; 118:65–73.

    PubMed  CAS  Google Scholar 

  117. Togias AG, Proud D, Lichtenstein LM, Adams GK, Norman PS, Kagey-Sobotka A, and Naclerio RM. The osmolality of nasal secretions increases when inflammatory mediators are released in response to inhalation of cold, dry air. Am. Rev. Resp. Dis. 1988; 137:625–629.

    PubMed  CAS  Google Scholar 

  118. Lykens K, Kagey-Sobotka A, Eggleston PA, Proud D, and Naclerio RM. Studies on the relationships between sensitivity to cold, dry air, hyperosmolar solutions, and histamine in the adult nose. Am. Rev. Resp. Dis. 1990; 141:1428–1433.

    PubMed  Google Scholar 

  119. Fitch KD, Morton AR, and Blanksby BA. Effects of swimming training on children with asthma. Arch. Dis. Child. 1976; 51:190–1

    PubMed  CAS  Google Scholar 

  120. Fitch KD, Blitvich JD, and Morton AR. The effect of running training on exercise-induced asthma. Ann. Allergy 1986; 57:90–94.

    PubMed  CAS  Google Scholar 

  121. Bundgaard A, Ingemann-Hansen T, Schmidt A, and Halkjaer-Kristensen J. Effect of physical training on peak oxygen consumption rate and exercise-induced asthma in adult asthmatics. Scand. J. Clin. Lab. Invest. 1982; 42:9–13.

    PubMed  CAS  Google Scholar 

  122. Svenonius E, Kautto R, and Arborelius M. Improvement after training of children with exercise-induced asthma. Acta Paediatr. Scand. 1983; 72:23–

    PubMed  CAS  Google Scholar 

  123. Henriksen JM and Nielsen TT. Effect of physical training on exercise-induced bronchoconstriction. Acta Paediatr. Scand. 1983; 72:31–

    PubMed  CAS  Google Scholar 

  124. Haas F, Pasierski S, Levine N, Bishop M, Axen K, Pineda H, and Haas A. Effect of aerobic training on forced expiratory airflow in exercising asthmatic humans. J. Appl. Physiol. 1987; 63:1230–1235.

    PubMed  CAS  Google Scholar 

  125. Chow OKW, So SY, and Lam WK. Effect of acupuncture on exercise-induced asthma. Lung 1983; 161:321–326.

    PubMed  CAS  Google Scholar 

  126. Fung KP, Chow OKW, and So SY. Attenuation of exercise-induced asthma by acupuncture. Lancet 1986; 20:1419–1421.

    Google Scholar 

  127. Belcher NG, Rees PJ, Clark TJH, and Lee TH. A comparison of the refractory periods induced by hypertonic airway challenge and exercise in bronchial asthma. Am. Rev. Resp. Dis. 1987; 135:822–825.

    PubMed  CAS  Google Scholar 

  128. Rosenthal RR, Laube B, Jaeger JJ, Philips YY, and Norman PS. Methacholine sensitivity is unchanged during the refractory period following an exercise or isocapnic challenge. J. Allergy Clin. Immunol. 1984; 73(Suppl.):281A.

    Google Scholar 

  129. Magnussen H, Reuss G, and Jorres R. Airway response to methacholine during exercise induced refractoriness in asthma. Thorax 1986; 41:667–670.

    PubMed  CAS  Google Scholar 

  130. Henriksen JM, Dahl R, and Lundqvist GR. Influence of relative humidity and repeated exercise on exercise-induced bronchoconstriction. Allergy 1981; 36:463–370.

    PubMed  CAS  Google Scholar 

  131. Wilson BA, Bar-Or O, and Seed LG. Effects of humid air breathing during arm or treadmill exercise on exercise-induced bronchoconstriction and refractoriness. Am. Rev. Resp. Dis. 1990; 142:349–352.

    PubMed  CAS  Google Scholar 

  132. Ben-Dov I, Bar-Yishay E, and Godfrey S. Refractory period after exercise-induced asthma unexplained by respiratory heat loss. Am. Rev. Resp. Dis. 1982; 125:530–534.

    PubMed  CAS  Google Scholar 

  133. Hahn AG, Nogrady SG, Burton GR, and Morton AR. Absence of refractoriness in asthmatic subjects after exercise with warm, humid inspirate. Thorax 1985; 40:418–421.

    PubMed  CAS  Google Scholar 

  134. Rosenthal RR, Laube BL, Hood DB, and Norman PS. Analysis of refractory period after exercise and eucapnic voluntary hyperventilation challenge. Am. Rev. Resp. Dis. 1990; 141:368–372.

    PubMed  CAS  Google Scholar 

  135. Bar-Yishay E, Ben-Dov I, and Godfrey S. Refractory period after hyperventilation-induced asthma. Am. Rev. Resp. Dis. 1983; 127:572–574.

    PubMed  CAS  Google Scholar 

  136. Nowak D, Kuziek G, Jorres R, and Magnussen H. Comparison of refractoriness after exercise-and hyperventilation-induced asthma. Lung 1991; 169:57–67.

    PubMed  CAS  Google Scholar 

  137. Morton AR, Fitch KD, and Davis T. The effect of (warm-up) on exercise-induced asthma. Ann. Allergy 1979; 42:257–260.

    PubMed  CAS  Google Scholar 

  138. Morton AR, Hahn AG, and Fitch KD. Continuous and intermittent running in the provocation of asthma. Ann. Allergy 1982; 48:123–129.

    PubMed  CAS  Google Scholar 

  139. Schnall RP and Landau LI. Protective effects of repeated short sprints in exercise-induced asthma. Thorax 1980; 35:828–832.

    PubMed  CAS  Google Scholar 

  140. Reiff DB, Choudry NB, Pride NB, and Ind PW. The effect of prolonged submaximal warm-up exercise on exercise-induced asthma. Am. Rev. Resp. Dis. 1989; 139:479–484.

    PubMed  CAS  Google Scholar 

  141. Weinstein RE, Anderson JA, Kvale P, and Sweet LC. Effects of humidification on exercise induced asthma (EIA). J. Allergy Clin. Immunol. 1976; 57: A250–A251.

    Google Scholar 

  142. Bar-Or O, Neuman I, and Dotan R. Effects of dry and humid climates on exercise-induced asthma in children and preadolescents. J. Allergy Clin. Immunol. 1977; 60:163–168.

    PubMed  CAS  Google Scholar 

  143. Deal EC, McFadden ER, Ingram RH, Strauss RH, and Jaeger JJ. Role of respiratory heat exchange in production of exercise-induced asthma. J. Appl. Physiol.: Resp. Environ. Exercise Physiol. 1979; 46:467–475.

    Google Scholar 

  144. McFadden ER, Lenner KA, and Strohl KP. Postexertional airway rewarming and thermally induced asthma. J. Clin. Invest. 1986; 78:18–25.

    PubMed  Google Scholar 

  145. Parsons GH, Pare PD, White DA, and Baile EM. Airway blood flow response to eucapnic dry air hyperventilation in sheep. J.Appl. Physiol. 1989; 66:1443–1447.

    PubMed  CAS  Google Scholar 

  146. Baile EM, Dahlby RW, Wiggs BR, Parsons GH, and Pare PD. Effect of cold and warm dry air hyperventilation on canine airway blood flow. J. Appl. Physiol. 1987; 62:526–532.

    PubMed  CAS  Google Scholar 

  147. Agostoni P, Arena V, Doria E, and Susini G. Inspired gas relative humidity affects systemic to pulmonary bronchial blood flow in humans. Chest 1990; 97:1377–1380.

    PubMed  CAS  Google Scholar 

  148. Anderson SD, Schoeffel RE, Black JL, and Daviskas E. Airway cooling as the stimulus to exercise-induced asthma. A re-evaluation. Eur. J. Resp. Dis. 1985; 67:20–30.

    CAS  Google Scholar 

  149. Aitken ML and Marini JJ. Effect of heat delivery and extraction on airway conductance in normal and in asthmatic subjects. Am. Rev. Resp. Dis. 1985; 131:357–361.

    PubMed  CAS  Google Scholar 

  150. Zawadski DK, Lenner KA, and McFadden ER. Comparison of intraairway temperatures in normal and asthmatic subjects after hyperpnea with hot, cold, and ambient air. Am. Rev. Resp. Dis. 1988; 138:1553–1558.

    PubMed  CAS  Google Scholar 

  151. Smith CM, Anderson SD, Walsh S, and McElrea MS. An investigation of the effects of heat and water exchange in the recovery period after exercise in children with asthma. Am. Rev. Resp. Dis. 1989; 140:598–605.

    PubMed  CAS  Google Scholar 

  152. Daviskas E, Gonda I, and Anderson SD. Mathematical modelling of heat and water transport in human respiratory tract. J. Appl. Physiol. 1990; 69:362–372.

    PubMed  CAS  Google Scholar 

  153. Daviskas E, Gonda I, and Anderson SD. Local airway heat and water vapour losses. Resp. Physiol. 1991; 84:115–132.

    CAS  Google Scholar 

  154. Smith CM and Anderson SD. A comparison between the airway response to isocapnic hyperventilation and hypertonic saline in subjects with asthma. Eur. Resp. J. 1989; 2:36–43.

    CAS  Google Scholar 

  155. Tabka Z, BenJebria A, Vergeret J, and Guenard H. Effect of dry warm air on respiratory water loss in children with exercise-induced asthma. Chest 1988; 94:81–86.

    PubMed  CAS  Google Scholar 

  156. Belcher NG, Lee TH, and Rees PJ. Airway responses to hypertonic saline, exercise and histamine challenges in bronchial asthma. Eur. Resp. J. 1989; 2:44–48.

    CAS  Google Scholar 

  157. Anderson SD and Daviskas E. The airway microvasculature in exercise induced asthma. Thorax 1992; 47:748–752.

    PubMed  CAS  Google Scholar 

  158. Deffebach ME, Salonen RO, Webber SE, and Widdicombe JG. Cold and hyperosmolar fluids in canine trachea: vascular and smooth muscle tone and albumin flux. J Appl. Physiol. 1989; 66(3):1309–1315.

    PubMed  CAS  Google Scholar 

  159. Lundvall J. Tissue hyperosmolarity as a mediator of vasodilation and transcapillary fluid flux in exercising skeletal muscle. Acta Physiol. Scand. 1972; 379(Suppl.): 1–1

    CAS  Google Scholar 

  160. Mellander S, Johansson B, Gray S, Jonsson O, Lundvall J, and Ljung B. The effects of hyperosmolarity on intact and isolated vascular smooth muscle. Possible role in exercise hyperemia. Angiologica 1967; 4:310–322.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anderson, S.D. (1994). Diagnosis and Management of Exercise-Induced Asthma. In: Gershwin, M.E., Halpern, G.M. (eds) Bronchial Asthma. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0297-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0297-4_22

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6697-6

  • Online ISBN: 978-1-4612-0297-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics