Nucleic Acid Probe Assays

  • Michael G. Pappas


For over 20 years nucleic acid probes have been vital tools in the field of molecu­lar biology. Methods such as the Southern, sandwich andin situhybridizations have greatly facilitated scientific research and have provided scientists with valuable information regarding the genetic compo­sitions of bacteria and viruses and how cyto­pathic viruses control hostcell genetic func­tions. Methods of detecting pathogenic viruses and bacteria in human blood and tissue specimens have been developed that are very sensitive and exquisitely specific. These methods include solution-phase andin situhybridization using labeled nucleic acid probes and the polymerase chain reac­tion, a revolutionary method for amplify­ing limited copies of specific nucleic acid sequences. However, the ability of these as­says to amplify and detect the desired patho­gen DNA or RNA, and not those of closely


Human Papilloma Virus Probe Assay Human Papilloma Virus Nucleic Acid Probe Sandwich Hybridization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Pertinent Reading


  1. Anonymous. 1993. FDA clears Roche Molecular Systems’ AmplicorTM PCR commercial test.GEN13(3):28.Google Scholar
  2. Berry, A.J. and J.B. Peter. 1984. DNA probes for infectious disease.Diag. Med.(March), pp. 62–72.Google Scholar
  3. Boshart, M., L. Gissmann, H. Ikenberg, A. Kleinheinz, W. Scheurlen, and H. zur Hausen. 1984. A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines from cervical cancer.Int. J. Cancer3:1151–1157.Google Scholar
  4. Broughty-Boye, G.C., J. Maman, J.-C. Marian, and P. Chuay. 1984. Biosynthesis of human tissue plas­minogen activator by normal cells.Biotechnol.2:1058–1062.CrossRefGoogle Scholar
  5. Bruce-Chwatt, L.J. 1987. From Laveran’s discovery to DNA probes: New trends in diagnosis of malaria.Lancet11:1509–1511.CrossRefGoogle Scholar
  6. Bugawan, T.L., R.K. Saiki, C.H. Lenenson, R.W. Watson, and H.A. Erlich. 1988. The use of non­radioactive oligonucleotide probes to analyze enzy­matically amplified DNA for prenatal diagnosis and forensic HLA typing.Bio/Technology6:943–947.CrossRefGoogle Scholar
  7. Burk, R.D., A.S. Kadish, S. Calderin, and S.L. Romney. 1986. Human papillomavirus infection of the cervix detected by cervicovaginal lavage and molecular hybridization: correlation with biopsy results and Papanicolaou smear.Am. J. Obstet. Gynecol.154:982–989.PubMedGoogle Scholar
  8. Cano, R.J. and M.L. Nelson. 1992. Fluorescent DNA hybridization assay increases sensitivity of clini­cal pathogen detection.Millipore BioforumMilli­pore Corp. Marlborough, MA, no. 2, p. 1.Google Scholar
  9. Chamberlain, J.S., R.A. Gibbs, J.E. Ranier, P.N. Nguyen, and C.T. Askey. 1988. Deletion screening of the Duchenne Muscular Dystrophy locus via multiplex DNA amplification.Nucleic Acids Res.16:11,141–11,156.Google Scholar
  10. Chiu, K.-P., S. Cohen, D. Morris, and G. Jordan. 1992. Intracellular amplification of proviral DNA in tissue sections using the polymerase chain reaction. J.Histochem. Cytochem.40:333–341.PubMedCrossRefGoogle Scholar
  11. Chollet, A. and E.H. Kawashima. 1985. Biotin-labeled synthetic oligodeoxyribonucleotides: chemical synthesis and uses as hybridization probes.Nucleic Acids Res.13:1529–1541.PubMedCrossRefGoogle Scholar
  12. Cimino, G.D., K.C. Mechette, J.W. Tessman, J.E. Hearst, and S.T. Isaacs. 1991. Post-PCR steriliza­tion: A method to control carryover contamina­tion for the polymerase chain reaction.Nucleic Acids Res.19(1):99–108.PubMedCrossRefGoogle Scholar
  13. Clewley, J.P. 1989. The polymerase chain reaction, a review of the practical limitations for human immunodeficiency virus diagnosis.J. Virol. Methods25:179–188.PubMedCrossRefGoogle Scholar
  14. DeFilippes, F.M. 1991. Decontaminating the polymerase chain reaction.BioTechniques10:26–30.PubMedGoogle Scholar
  15. Doi, R.H. 1984. Genetic engineering inBacillus subtilis Biotechnol. Genet. Engineer. Rev.2:121–156.CrossRefGoogle Scholar
  16. Ehlen, T. and L. Dubeau. 1989. Detection ofraspoint mutations by polymerase chain reaction using mutation-specific, inosine-containing oligonuc­leotide primers.Biochem. Biophys. Res. Commun.160:411–447.CrossRefGoogle Scholar
  17. Enns, R.K. 1988. DNA probes: An overview and comparison with current methods.Lab. Med.19:295–300.Google Scholar
  18. Evans, R.K. and B.E. Haley. 1987. Synthesis and bio­logical properties of 5-azido-2’-deoxyuridine 5’-triphosphate, a photoactive nucleotide suitable for making light-sensitive DNA.Biochem.26:269–276.Google Scholar
  19. Farrell, P.J. and J. Tidy. 1989. Retraction: human papillomavirus subtype 16b.Lancetii(8679):1535.Google Scholar
  20. Fayerman, J.T. 1986. New developments in gene cloning in antibiotic-producing microorganisms.Biotechnology4:786–789.CrossRefGoogle Scholar
  21. Gall, J.G. and M.L. Pardue. 1969. Formation and detection of RNA-DNA hybrid molecules in cyto­logical preparations.PNAS (USA)63:378–383.CrossRefGoogle Scholar
  22. Gama, R.E., P.J. Hughes, C.B. Bruce, and G. Stanway. 1988. Polymerase chain reaction amplification of rhinovirus nucleic acids from clinical material.Nucleic Acids Res.16:9346.PubMedCrossRefGoogle Scholar
  23. Ghosh, S.S. and G.F. Musso. 1987. Covalent attach­ment of oligonucleotides to solid supports.Nucleic Acids Res.15:5353–5372.PubMedCrossRefGoogle Scholar
  24. Gouvea, V., R.I. Glass, P. Woods, K. Taniguchi, H.F. Clark, B. Forrestor, and Z.-Y. Fang. 1990. Poly-merase chain amplification and typing of rota-virus nucleic acid from stool specimens.J. Clin. Microbiol.28:276–282.PubMedGoogle Scholar
  25. Grimont, P.A.D., F. Grimont, N. Desplaces, and P. Tchen. 1985. DNA probe specific forLegionella pneumophila. J. Clin. Microbiol.21:431–437.Google Scholar
  26. Haase, A.T., E. Retzel, and K. Staskus. 1990. Ampli­fication and detection of lentiviral DNA inside cells.PNAS (USA)87:4971–4975.CrossRefGoogle Scholar
  27. Haff, L. 1992.In situPCR: A practical workshop.Amplifications: Aforum for PCR Users.Perkin Elmer Corp., Issue 8, June, pp.4–5.Google Scholar
  28. Hall, R., J.E. Hyde, M. Goman, D.L. Simmons, I.A. Hope, M. Mackay, and J. Scaife. 1984. Major sur­face antigen gene of a human malaria parasite cloned and expressed in bacteria.Nature311:379­-382.PubMedCrossRefGoogle Scholar
  29. Hanson, C.A., E.A. Holbrook, S. Sheldon, B. Schnitzer, and M.S. Roth. 1990. Detection of Philadelphia chromosome-positive cells from glass slide smears using the polymerase chain reaction.Am. J. Pathol.137:1–6.PubMedGoogle Scholar
  30. Haralambidis, J., K. Angus, S. Pownall, L. Duncan, M. Chai, and G.W. Tregear. 1990. The preparation of polyamide-oligonucleotide probes containing multiple nonradioactive labels.Nucleic Acids Res.18:501–505.PubMedCrossRefGoogle Scholar
  31. Hart, C., T. Spira, J. Moore, J. Sninsky.1988. Direct detection of HIV RNA expression in sero­positive subjects.Lancet11:596–599.CrossRefGoogle Scholar
  32. Higuci, R., C.H. von Beroldingen, G.F. Sensabaugh, and H.A. Erlich. 1988. DNA typing from single hairs.Nature (London)332:543–546.CrossRefGoogle Scholar
  33. Holmberg, M., F.C. Shenton, L. Franzen, K. Janneh, R.W. Snow, U. Petterson, H. Wigzell, and B.M. Greenwood. 1987. Use of a DNA hybridization assay for the detection ofPlasmodium falciparumin field trials.Am. J. Trop. Med. Hyg.37:230–234.PubMedGoogle Scholar
  34. Innis, M.A., K.B. Myambo, D.H. Gelfand, and M.A.D. Brow. 1988. DNA sequencing withThermus aquaticusDNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA.PNAS (USA)85:9436–9440.CrossRefGoogle Scholar
  35. Isaacs, S.T., J.W. Tessman, K.C. Mechette, J.E. Hearst, and G.D. Cimino. 1991. Post-PCR sterilization: Development and application to an HIV-1 diagnostic assay.Nucl. Acids Res.19(1):109–116.PubMedCrossRefGoogle Scholar
  36. Kaneko, S., S.M. Feinstone, and R.H. Miller. 1989. Rapid and sensitive method for the detection of serum hepatitis B virus DNA using the polymer-ase chain reaction technique.J. Clin. Microbiol.27:1930–1933.PubMedGoogle Scholar
  37. Kaneko, S., M. Unoura, K. Kobayashi, K. Kuno, S. Murakami, and N. Hattori. 1990. Detection of serum hepatitis C virus DNA.Lanceti:976.Google Scholar
  38. Kawasaki, E.S., S.S. Clark, M.Y. Coyne, S.D. Smith, R. Champlin, O.N. Witte, and F.P. McCormick. 1988. Diagnosis of chronic myeloid and acute lym­phocytic leukemias by detection of leukemia-specific mRNA sequences amplifiedin vitro. PNAS (USA)85:5698–5702.CrossRefGoogle Scholar
  39. Kemp, D.J., D.B. Smith, S.J. Foote, N. Samaras, and M.G. Peterson. 1989. Colorimetric detection of specific DNA segments amplified by polymerase chain reactions.PNAS (USA)86:2423–2427.CrossRefGoogle Scholar
  40. Kitchin, P.A., Z. Szotyori, C. Fromholc, and N. Almond. 1990. Avoiding false positives.Nature344:201.PubMedCrossRefGoogle Scholar
  41. Kohne, D.E. 1986. Application of DNA probe tests to the diagnosis of infectious disease.Am. Clin. Prod. Rev.November, pp. 20–29.Google Scholar
  42. Kumar, A., P. Tchen, F. Roullet, and J. Cohen. 1988. Nonradioactive labelling of synthetic oligonuc­leotide probes with terminal deoxynucleotidyl transferase.Anal. Biochem.169:376–382.PubMedCrossRefGoogle Scholar
  43. Kwoh, D.Y., G.R. Davis, K.M. Whitfield, H.L. Chappele, L.J. DiMichele, and T.R. Gingeras. 1989. Transcription-based amplification system and detection of amplified human immunodefi­ciency virus type 1 with a bead-based sandwich hybridization format.PNAS (USA)86:1173–1177.CrossRefGoogle Scholar
  44. Kwok, S. and R. Higuchi. 1989. Avoiding false positives with PCR.Nature339:237.PubMedCrossRefGoogle Scholar
  45. Landry, M.L. and C.K.Y. Fong.1985. Nucleic acid hybridization in the diagnosis of viral infections.Clin. Lab. Med.5:513–529.PubMedGoogle Scholar
  46. Landegren, U., R. Kaiser, J. Sanders, and L. Hood. 1988. A ligase-mediated gene detection technique.Science241:1077–1080.PubMedCrossRefGoogle Scholar
  47. Langer, P.R., A.A. Waldrop, and D. Ward. 1981. Enzymatic synthesis of biotin-labeled polynucleo­tides: novel nucleic acid affinity probes.PNAS (USA)78:6633–6637.CrossRefGoogle Scholar
  48. Leary, J.J., D.J. Brigati, and D.C. Ward. 1983. Rapid and sensitive colorimetric method for visualizing biotin-labeled DNA probes hybridized to DNA or RNA immobilized on nitrocellulose: Bioblots.PNAS (USA)80:4045–4049.CrossRefGoogle Scholar
  49. Lewis, R. 1990. Competitors take on PCR for share of diagnostics market.GEN10:1.Google Scholar
  50. Li, H.H., U.B. Gyllensten, X.F. Cui, R.K. Saiki, H.A. Erlich, and N. Arnheim. 1988. Amplification and analysis of DNA sequences in single sperm and diploid cells.Nature335:414–417.PubMedCrossRefGoogle Scholar
  51. Lizardi, P.M., C.E. Guerra, H. Lomeli, I. Tussie-Luna, and F.R. Kramer. 1988. Exponential amplification of recombinant-RNA hybridization probes.Biotechnology6:1197–1202.CrossRefGoogle Scholar
  52. Lwe, J.B. 1986. Clinical applications of gene probes in human genetic disease, malignancy and infectious disease.Clin. Chim. Acta157:1–32.CrossRefGoogle Scholar
  53. Messer, A. 1988. Nucleic acid probe technology: An overview. in:Nucleic Acid Probes in Diagnosis of Human Genetic Diseases.(Ed., A.M. Willey) Liss, New York, 1988, pp. 3–9.Google Scholar
  54. Morell, V. 1993. Dino DNA: the hunt and the hype.Science261:160–162.PubMedCrossRefGoogle Scholar
  55. Mullis, K.B. 1987. US Patent No. 4,683,202.Google Scholar
  56. Mullis, K. 1990. The unusual origin of the polymerase chain reaction.Sci. Am.262:56–65.PubMedCrossRefGoogle Scholar
  57. Mullis, K.B. and F.A. Faloona. 1987. Specific synthe­sis of DNAin vitrovia a polymerase-catalyzed chain reaction.Methods Enzymol.155:355–350.Google Scholar
  58. Mullis, K., F. Faloona, S. Scharf, R. Saiki, G. Horn, and H. Erlich. 1986. Specific enzymatic ampli­fication of DNAin vitro: the polymerase chain reaction.Cold Spring Harbor Symp. Quant. Biol. 51:263–273.PubMedCrossRefGoogle Scholar
  59. Murasugi, A. and R.B. Wallace. 1984. Biotin-labeled oligonucleotides: enzymatic synthesis and use as hybridization probes.DNA3:269–277.PubMedCrossRefGoogle Scholar
  60. Nash, J.M. 1991. Ultimate gene machine.Time.August 12, pp. 54–55.Google Scholar
  61. Nuovo, G.J., F. Gallery, P. MacConnel, J. Becker, and W. Bloch. 1992. An improved technique for thein situdetection of DNA after polymerase chain reaction.Am. J. Pathol.139:1239–1244.Google Scholar
  62. Orlandi, R., D.J. Gussow, P.T. Jones, and G. Winter. 1989. Cloning immunoglobulin variable domains for expression by the polymerase chain reaction.PNAS86:3833–3837.PubMedCrossRefGoogle Scholar
  63. Oser, A., W.K. Roth, and G. Valet. 1988. Sensitive nonradioactive dot-blot hybridization using DNA probes labelled with chelate group substituted psoralen and quantitative detection by europium ion fluorescence.Nucleic Acids Res.16:1181–1196.PubMedCrossRefGoogle Scholar
  64. Oste, C. 1988. Polymerase chain reaction.Biotech­niques6:162–167.Google Scholar
  65. Pääbo, S., J.A. Gifford, and A.C. Wilson. 1988. Mitochondrial DNA sequences from a 7000-year old brain.Nucleic Acids Res.16:9775–9787.CrossRefGoogle Scholar
  66. Pääbo, S., R.G. Higuchi, and A.C. Wilson. 1989. Ancient DNA and the polymerase chain reaction.J. Biol. Chem.164:9709–9712.Google Scholar
  67. Persing, D.H., S.R. Telford III, P.N. Rys, D.E. Dodge, T.J. White, S.E. Malawista, and A. Spielman. 1990.Google Scholar
  68. Detection ofBorrelia bergdorferiDNA in museum specimens ofIxodes damminiticks.Science 249:1420–1423.Google Scholar
  69. Renz, M. and C. Kruz. 1984. A colorimetric method for DNA hybridization.Nucleic Acids Res.12:3435–3444.PubMedCrossRefGoogle Scholar
  70. Saiki, R.K., D.H. Gelfand, S. Stoffel, S.J. Scharf, R. Higuchi, G.T. Horn, K.B. Mullis, and H.A. Erlich. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase.Science239:487–491.PubMedCrossRefGoogle Scholar
  71. Saiki, R.K., S. Scharf, F. Faloona, K.B. Mullis, G.T. Horn, H.A. Erlich, and N. Arnheim. 1985. Enzym­atic amplification of ß-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia.Science230:1350–1354.PubMedCrossRefGoogle Scholar
  72. Schizhong, C. and G.A. Evans. A simple screening method for transgenic mice using the polymerase chain reaction.Biotechniques8:32–33.Google Scholar
  73. Shibata, D.K., N. Arnheim, and W.J. Martin. 1988. Detection of human papilloma virus in paraffin-embedded tissue using the polymerase chain reaction. J.Exp. Med.167:225–230.PubMedCrossRefGoogle Scholar
  74. Southern, E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electro­phoresis. J.Mol. Biol.98:503–517.PubMedCrossRefGoogle Scholar
  75. Taub, F.E., S.L. Grillo, C.M. Burns, N. Moore, and M.E. Mosher. 1988. The use of DNA probes to diagnose viral infections. in:Developments in Industrial Microbiology (vol. 29) (Ed., G. Pierce), Society of Industrial Microbiology, pp.119–129.Google Scholar
  76. Thein, S.L. and R.B. Wallace. 1986. The use of synthetic oligonucleotides as specific hybridiza­tion probes in the diagnosis of genetic disorders. in:Human Genetic Diseases: A Practical Approach(Ed., K.E. Davis) IRL Press, Herndon, VA, pp. 33–50.Google Scholar
  77. US Patent No. 4,683,202 describing the polymerase chain reaction, issued to Cetus Corp.Google Scholar
  78. US Patent No. 4,828,979 describing the production of nucleotide analogs with reporter groups for use in DNA probes, issued to Life Technologies Inc.Google Scholar
  79. Vary, C.P.H. 1992. Triple helical capture assay for quantification of polymerase chain reaction products.Clin. Chem.38:687–694.PubMedGoogle Scholar
  80. Webb, L., M. Carl, D.C. Malloy, G.A. Dasch, and A.F. Azad. 1990. Detection of typhus infection infleas by using the polymerase chain reaction.J. Clin. Microbiol.28:530–534.PubMedGoogle Scholar
  81. Wilkinson, H.W., J.S. Sampson, and B.B. Plikaytis. 1986. Evaluation of the gene probe for identi­fication ofLegionellacultures. J.Clin. Microbiol.23:217–220.PubMedGoogle Scholar
  82. Williams, J.F. and M.S. Anderson. 1992. Understand­ing temperature dynamics in PCR reaction tubes.Amplifications: A forum for PCR Users.Perkin Elmer Corp., Issue 8, June, pp. 14–15.Google Scholar
  83. Woese, C.R. 1987. Bacterial evolution.Microbiol. Rev.51:221–271.PubMedGoogle Scholar


  1. Applications of DNA Probes for the Diagnosis of Human Infectious diseases: An R. A. Budd and P. Czerski. US Department of Health and Human Services, HHS Publication 88–4229, September, 1988.Google Scholar
  2. Biotechnology, Principles and Applications(Eds., I.J. Higgins, J.D. Best, and J. Jones) Blackwell, Boston, 1985Google Scholar
  3. Detection by Genetic Engineering Methods(Eds., P.A. Lucin and K.S. Steimer) Dekker, New York, 1989.Google Scholar
  4. DNA Probesby G.H. Keller and M.M. Manak. Stockton Press, New York, 1989.Google Scholar
  5. Gene Cloningthe Mechanics of DNA Manipulation. by D.M. Glover. Chapman and Hall, London, 1984.Google Scholar
  6. Gene Probes for Bacteria(Eds., A.J.L. Macario and E. Conway de Macario) Academic Press, Boston, 1990.Google Scholar
  7. Molecular Cloning: A Laboratory Manual(2nd ed.). by J. Sambrook, E.F. Fritsch, and T. Maniatis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, (vols. 1–3), 1989Google Scholar
  8. Nucleic Acid Probes in Diagnosis of Human Genetic Diseases(Ed., A.M. Willey) Liss, New York, 1988.Google Scholar
  9. PCR Protocols, A Guide to Methods and Applications(Eds., M.A. Innis, D.H. Gelfand, J.J. Sninsky, and T.J. White) Academic Press, New York, 1990.Google Scholar
  10. PCR Technology. Principles and Applications for DNA Amplification(Ed., H.A. Erlich) Stockton Press, New York, 1989.Google Scholar
  11. Recombinant DNA Methodology(Eds., R. Wu, L. Grossman, and K. Moldave) Academic Press, San Diego, 1989.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Michael G. Pappas
    • 1
  1. 1.Advanced Instruments Inc.NorwoodUSA

Personalised recommendations