Skip to main content

Principles of Electrogenesis of Slow Field Potentials in the Brain

  • Chapter
Cognitive Electrophysiology
  • 120 Accesses

Abstract

Field potentials, generated in the extracellular space of the brain, consist of rapid potential fluctuations and slow baseline shifts. The rapid waves represent the conventional electroencephalogram (EEG). Both phenomena—the slow baseline shifts and the rapid waves—can be recorded as so-called direct current (DC) potential (Andersen and Andersson, 1968; Caspers, 1974; Caspers, Speckmann, and Lehmenkühler, 1980, 1984; Creutzfeldt and Houchin, 1974; Speckmann and Caspers, 1979a; Speckmann and Walden, 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen P, Andersson SA (1968): Physiological Basis of the Alpha Rhythm. New York: Meredith.

    Google Scholar 

  • Caspers H (1963): Relations of steady potential shifts in the cortex to the wakefulness-sleep spectrum. In: Brain Function, Brazier, MAB, ed., pp. 177–200. Berkeley: University of California Press.

    Google Scholar 

  • Caspers H, ed. (1974): DC potentials recorded directly from the cortex. In: Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 10, Part A, Remond A, ed., p. 3. Amsterdam: Elsevier.

    Google Scholar 

  • Caspers H, Speckmann E-J (1969): DC potential shifts in paroxysmal states. In: Basic Mechanisms of the Epilepsies, Jasper HH, Ward AA, Jr., Pope A, eds., pp. 375–395. Boston: Little, Brown.

    Google Scholar 

  • Caspers H, Speckmann E-J (1974): Cortical DC shifts associated with changes of gas tensions in blood and tissue. In: Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 10, Part A, Remond A, ed., pp. 41–65. Amsterdam: Elsevier.

    Google Scholar 

  • Caspers H, Speckmann E-J, Lehmenkühler A (1979): Effects of CO2 on cortical field potentials in relation to neuronal activity. In: Origin of Cerebral Field Potentials, Speckmann E-J, Caspers H, eds., pp. 151–163. Stuttgart: Thieme.

    Google Scholar 

  • Caspers H, Speckmann E-J, Lehmenkühler A (1980): Electrogenesis of cortical DC potentials. In: Motivation, Motor and Sensory Processes of the Brain: Electrical Potentials, Behaviour and Clinical Use, Progress in Brain Research, Vol. 54, Kornhuber HH, Deecke L, eds., pp. 3–15. New York: Elsevier.

    Google Scholar 

  • Caspers H, Speckmann E-J, Lehmenkühler A (1984): Electrogenesis of slow potentials of the brain. In: Self-Regulation of the Brain and Behavior, Elbert T, Rockstroh B, Lützenberger W, Birbaumer N, eds., pp. 26–41. New York: Springer.

    Chapter  Google Scholar 

  • Caspers H, Speckmann E-J, Lehmenkühler A (1987): DC potentials of the cerebral cortex. Seizure activity and changes in gas pressures. Rev Physiol Biochem Pharmacol, 106:127–178.

    Article  PubMed  CAS  Google Scholar 

  • Creutzfeldt O, Houchin J (1974): Neuronal basis of EEG waves. In: Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 2, Part C, Remond A, ed., pp. 5–55. Amsterdam: Elsevier.

    Google Scholar 

  • De Robertis EDP, Carrea R, eds. (1965): Biology of Neuroglia. Progress in Brain Research, p. 15. New York: Elsevier.

    Google Scholar 

  • Elger CE, Speckmann E-J (1980): Focal interictal epileptiform discharges (FIED) in the epicortical EEG and their relations to spinal field potentials in the rat. Electroencephalogr Clin Neurophysiol 48:447–460.

    Article  PubMed  CAS  Google Scholar 

  • Elger CE, Speckmann E-J (1983a): Penicillin-induced epileptic foci in the motor cortex: Vertical inhibition. Electroencephalogr Clin Neurophysiol 56:604–622.

    Article  PubMed  CAS  Google Scholar 

  • Elger CE, Speckmann E-J (1983b): Vertical inhibition in motor cortical epileptic foci and its consequences for descending neuronal activity to the spinal cord. In: Epilepsy and Motor System, Speckmann E-J, Elger CE, eds., pp. 152–160. Baltimore: Urban & Schwarzenberg.

    Google Scholar 

  • Elger CE, Speckmann E-J, Caspers H, Prohaska O (1982): Focal interictal epileptiform discharges in the cortex of the rat: Laminar restriction and its consequences for activity descending to the spinal cord. In: Physiology and Pharmacology of Epileptogenic Phenomena, Klee MR, Lux HD, Speckmann E-J, pp. 13–20. New York: Raven Press.

    Google Scholar 

  • Elger CE, Speckmann E-J, Prohaska O, Caspers H (1981): Pattern of intracortical potential distribution during focal interictal epileptiform discharges (FIED) and its relation to spinal field potentials in the rat. Electroencephalogr Clin Neurophysiol 51:393–402.

    Article  PubMed  CAS  Google Scholar 

  • Goldring S (1974): DC shifts released by direct and afferent stimulation. In: Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 10, Part A, Remond A, ed., pp. 12–24. Amsterdam: Elsevier.

    Google Scholar 

  • Gumnit R (1974): DC shifts accompanying seizure activity. In: Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 10, Part A, Remond A, ed., pp. 66–77. Amsterdam: Elsevier.

    Google Scholar 

  • Gumnit RJ, Matsumoto H, Vasconetto C (1970): DC activity in the depth of an experimental epileptic focus. Electroencephalogr Clin Neurophysiol 28:333–339.

    Article  PubMed  CAS  Google Scholar 

  • Jasper HH, Ward AA, Pope A, eds. (1969): Basic Mechanisms of the Epilepsies. Boston: Little, Brown.

    Google Scholar 

  • Klee MR, Lux HD, Speckmann E-J, eds. (1982): Physiology and Pharmacology of Epileptogenic Phenomena. New York: Raven Press.

    Google Scholar 

  • Klee MR, Lux HD, Speckmann E-J, eds. (1991): Physiology, Pharmacology and Development of Epileptogenic Phenomena. Experimental Brain Research Series 20. Berlin: Springer.

    Google Scholar 

  • Kuffler SW, Nicholls JG (1966): The physiology of neuroglial cells. Ergeb Physiol 57:1–90.

    Article  PubMed  CAS  Google Scholar 

  • Kuffler SW, Nicholls JG, Orkand RK (1966): Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol 29:768–780.

    PubMed  CAS  Google Scholar 

  • Lehmenkühler A (1988): Änderungen des Mikromilieus von Nervenzellen in der Hirnrinde bei epileptischen Anfällen. Exp Beobachtung. EEG 10:145–161.

    Google Scholar 

  • Palay SL, Chan-Palay V (1977): General morphology of neurons and neuroglia. In: Handbook of Physiology. The Nervous System, Vol. 1, Part 1, Kandel ER, ed., pp. 5–37. Bethesda: American Physiological Society.

    Google Scholar 

  • Petsche H, Müller-Paschinger I, Pockberger H, Prohaska O, Rappelsberger P, Vollmer R (1978): Depth profiles of electrocortical activities and cortical architectonics. In: Architectonics of the Cerebral Cortex, Vol. 3, Brazier MAB, Petsche H, eds., pp. 257–280. IBRO Monograph Series. New York: Raven Press.

    Google Scholar 

  • Petsche H, Pockberger H, Rappelsberger P (1981): Current source density studies of epileptic phenomena and the morphology of the rabbit’s striate cortex. In: Physiology and Pharmacology of Epileptogenic Phenomena, Klee MR, Lux HD, Speckmann E-J, eds., pp. 53–63. New York: Raven Press.

    Google Scholar 

  • Pöppelmann T (1988): DC-Potentiale der Schädeloberfläche bei Hyperkapnie, Hypoxie und Asphyxie. Doctoral Thesis, Münster, Germany.

    Google Scholar 

  • Somjen GG, Trachtenberg M (1979): Neuroglia as generator of extracellular current. In: Origin of Cerebral Field Potentials, Speckmann E-J, Caspers H, eds., pp. 21–32. Stuttgart: Thieme.

    Google Scholar 

  • Speckmann E-J (1986): Experimentelle Epilepsieforschung. Darmstadt: Wissenschaftliche Buchgesellschaft.

    Google Scholar 

  • Speckmann E-J, Caspers H (1974): The effect of O2 and CO2 tensions in the nervous tissue on neuronal activity and DC potentials. In: Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 2, Part C, Remond A, ed., pp. 71–89. Amsterdam: Elsevier.

    Google Scholar 

  • Speckmann E-J, Caspers H, eds. (1979a): Origin of Cerebral Field Potentials. Stuttgart: Thieme.

    Google Scholar 

  • Speckmann E-J, Caspers H (1979b): Cortical field potentials in relation to neuronal activities in seizure conditions. In: Origin of Cerebral Field Potentials, Speckmann E-J, Caspers H, eds., pp. 205–213. Stuttgart: Thieme.

    Google Scholar 

  • Speckmann E-J, Elger CE, eds. (1983): Epilepsy and Motor System. Baltimore: Urban & Schwarzenberg.

    Google Scholar 

  • Speckmann E-J, Elger CE (1984): The neurophysiological basis of epileptic activity: A condensed overview. In: Epilepsy, Sleep and Sleep Deprivation, Degen R, Niedermeyer E, eds., pp. 23–34. Amsterdam: Elsevier.

    Google Scholar 

  • Speckmann E-J, Walden J (1991): Mechanisms underlying the generation of cortical field potentials. Acta Otolaryngol (Suppl.) 491:17–24.

    Article  CAS  Google Scholar 

  • Speckmann EJ, Caspers H, Elger CE (1984): Neuronal mechanisms underlying the generation of field potentials. In: Self-Regulation of the Brain and Behavior, Elbert T, Rockstroh B, Lützenberger W, Birbaumer N, eds., pp. 9–25. New York: Springer.

    Chapter  Google Scholar 

  • Speckmann E-J, Caspers H, Janzen RWC (1972): Relations between cortical DC shifts and membrane potential changes of cortical neurons associated with seizure activity. In: Synchronization of EEG Activity in Epilepsies, Petsche H, Brazier MAB, eds., pp. 93–111. New York: Springer.

    Chapter  Google Scholar 

  • Speckmann E-J, Caspers H, Janzen RWC (1978): Laminar distribution of cortical field potentials in relation to neuronal activities during seizure discharges. In: Architectonics of the Cerebral Cortex, Vol. 3, Brazier MAB, Petsche H, eds., pp. 191–209. IBRO Monograph Series. New York: Raven Press.

    Google Scholar 

  • Wieser HG (1983): Electroclinical Features of the Psychomotor Seizure. A Stereoencephalographic Study of Ictal Symptoms and Chronotopographical Seizure Patterns Including Clinical Effects of Intracerebral Stimulation. New York: Gustav Fischer.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Speckmann, EJ., Altrup, U., Lücke, A., Köhling, R. (1994). Principles of Electrogenesis of Slow Field Potentials in the Brain. In: Heinze, HJ., Münte, T.F., Mangun, G.R. (eds) Cognitive Electrophysiology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0283-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0283-7_13

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6693-8

  • Online ISBN: 978-1-4612-0283-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics