Skip to main content

The Influence of Hand Movements on Cortical Negative DC Potentials

  • Chapter
Cognitive Electrophysiology
  • 116 Accesses

Abstract

In contrast to the numerous studies investigating changes of slow negative DC potentials before movement onset, caused by either the so-called Bereitschaftspotential (BP) preceding only self-paced movements (Kornhuber and Deecke, 1965) or by the contingent negative variation (CNV) in a conditioned, forewarned reaction task (Walter, 1964), very few studies have examined the relationship between slow negative DC potentials and different motor task conditions. Only recently has research interest in slow negative DC potentials shifted from the registration of events preceding the movement to the registration of events during the movement (Cooper, McCallum, and Cornthwaite, 1989; Lang et al. 1988a, 1988b). This is because, as Lang et al. (1989) pointed out in a study comparing simple and complex sequential movement tasks, performance-related DC shifts are more useful for separating motor tasks than is the preceding BP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brunia CHM, van den Bosch WEJ (1984): Movement related slow potentials. (I) A contrast between finger and foot movements in right-handed subjects. Electroencephalogr Clin Neurophysiol 57:515–527.

    Article  PubMed  CAS  Google Scholar 

  • Brunia CHM, Voorn FJ, Berger MPF (1985): Movement related slow potentials. (II) A contrast between finger and foot movements in left-handed subjects. Electroencephalogr Clin Neurophysiol 60:135–145.

    Article  PubMed  CAS  Google Scholar 

  • Busk J, Galbraith CG (1975): EEG correlates of visual-motor practice in man. Electroencephalogr Clin Neurophysiol 38:415–422.

    Article  PubMed  CAS  Google Scholar 

  • Cooper R, Crow HJ (1975): Changes of cerebral oxygenation during motor and mental tasks. In: Brainwork, Ingvar H, Lassen NA, eds., pp. 389–392. Copenhagen: Munksgaard.

    Google Scholar 

  • Cooper R, McCallum WC, Cornthwaite SP (1989): Slow potential changes related to the velocity of target movement in a tracking task. Electroencephalogr Clin Neurophysiol 72:232–239.

    Article  PubMed  CAS  Google Scholar 

  • Coquery JM, Coulmance M, Leron MC (1972): Modification of somaesthetic cortical evoked potentials during active and passive movements in man. Electroencephalogr Clin Neurophysiol 33:269–276.

    Article  PubMed  CAS  Google Scholar 

  • Deecke L, Kornhuber HH, Lang W, Lang M, Schreiber H (1985): Timing function of the frontal cortex in sequential motor and learning tasks. Hum Neurobiol 4:143–154.

    PubMed  CAS  Google Scholar 

  • Elger CE, Speckmann EJ (1980): Focal interictal epileptiform discharges in the epicortical EEG and their relations to spinal field potentials in the rat. Electroencephalogr Clin Neurophysiol 48:447–460.

    Article  PubMed  CAS  Google Scholar 

  • Grünewald G, Grünewald-Zuberbier E (1983): Cerebral potentials during voluntary ramp movements in aiming tasks. In: Tutorials in ERP Research: Endogenous Components, Gaillard AWK, Ritter W, eds., pp. 311–327. Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Grünewald G, Grünewald-Zuberbier E, Hömberg V, Netz J (1979) Cerebral potentials during smooth goal-directed hand movements in right-handed and left-handed subjects. Pflügers Arch Physiol 381:39–46.

    Article  Google Scholar 

  • Halsey JH, Blauenstein UW, Wilson EM, Wills EH (1979): Regional cerebral blood flow in comparison of right and left hand movements. Neurology 29:21–28.

    Article  PubMed  Google Scholar 

  • Hufschmidt A, Lücking CH, Winker T, Niemann J (1992): Functional components of slow brain potentials during visuo-manual tracking. In: Slow Brain Potentials and Magnetic Fields, Haschke W, Speckmann EJ, eds. Schiller University Press, Jena.

    Google Scholar 

  • Jasper HH (1957): The ten-twenty electrode system of the international federation. Electroencephalogr Clin Neurophysiol 10:371–375.

    Google Scholar 

  • Jasper HH, Penfield W (1949): Electrocorticograms in man: Effect of voluntary movement upon electrical activity of the precentral gyrus. Arch Psychiatr Neurol 183:163–174.

    Article  Google Scholar 

  • Kornhuber HH, Deecke L (1965): Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflügers Arch Ges Physiol 284:1–17.

    Article  CAS  Google Scholar 

  • Kristeva R, Deecke L (1980): Cerebral potentials preceding right and left unilateral and bilateral finger movements in sinistrals. In: Motivation, Motor and Sensory Processes of the Brain, Kornhuber HH, Deecke L, eds., Prog Brain Res 54:748–754.

    Google Scholar 

  • Kurtzberg D, Vaughan HG (1982): Topographic analysis of human cortical potentials preceding self-initiated and visually triggered saccades. Brain Res 243:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Kutas M, Donchin E (1974): Studies of squeezing: Handedness, responding hand, response force and asymmetry of readiness potential. Science 186:545–548.

    Article  PubMed  CAS  Google Scholar 

  • Kutas M, Donchin E (1980): Preparation to respond as manifested by movement-related brain potentials. Brain Res 202:95–115.

    PubMed  CAS  Google Scholar 

  • Landwehrmeyer B (1990): Hirnelektrische Korrelate einer Rechtsdominanz der Raumwahrnehmung. Medical Dissertation, Albert-Ludwigs-Universität, Freiburg i. Brsg.

    Google Scholar 

  • Lang W, Lang M, Podreka I, Steiner M, Uhl F, Suess E, Müller CH, Deecke L (1988a): DC-potential shifts and regional cerebral blood flow reveal frontal cortex involvement in human visuomotor learning. Exp Brain Res 71:353–364.

    PubMed  CAS  Google Scholar 

  • Lang W, Lang M, Uhl F, Koska CH, Kornhuber A, Deecke L (1988b): Negative cortical DC-shifts preceding and accompanying simultaneous and sequential finger movements. Exp Brain Res 71:579–587.

    Article  PubMed  CAS  Google Scholar 

  • Lang W, Zilch O, Koska A, Lindinger G, Deecke L (1989): Negative cortical DC-shifts preceding and accompanying simple and complex sequential movements. Exp Brain Res 74:99–104.

    Article  PubMed  CAS  Google Scholar 

  • Lang W, Obrig H, Lindinger G, Cheyne D, Deecke L (1990): Supplementary motor area activation while tapping bimanually different rhythms in musicians. Exp Brain Res 79:504–514.

    Article  PubMed  CAS  Google Scholar 

  • Lemon RN, Hanby JA, Porter R (1976): Relationship between the activity of precentral neurons during active and passive movements in conscious monkeys. Proc R Soc Lond B 194:341–373.

    Article  PubMed  CAS  Google Scholar 

  • McAdam DW, Seales DM (1969): Bereitschaftspotential enhancement with increased level of motivation. Electroencephalogr Clin Neurophysiol 27:73–75.

    Article  PubMed  CAS  Google Scholar 

  • McCallum WC, Papakostopoulos D (1973): The CNV and reaction time in situations of increasing complexity. In: Event-Related Slow Potentials of the Brain: Their Relations to Behaviour McCallum WC, Knott JC, eds. Electroencephalogr Clin Neurophysiol Suppl 33:179–185.

    Google Scholar 

  • McCallum WC, Cooper R, Pocock PV (1988): Brain slow potential and ERP changes associated with operator load in a visual tracking task. Electroencephalogr Clin Neurophysiol 69:453–468.

    Article  PubMed  CAS  Google Scholar 

  • Niemann J, Winker T, Gerling J, Landwehrmeyer B, Jung R (1991): Changes of slow cortical negative DC-potentials during the acquisition of a complex finger motor task. Exp Brain Res 85:417–422.

    Article  PubMed  CAS  Google Scholar 

  • Niemann J, Winker T, Jung R (1992): Changes in Cortical Negative DC Shifts Due to Different Motor Test Conditions. Electroencephalogr Clin Neurophysiol 83:297–305.

    Article  PubMed  CAS  Google Scholar 

  • Papakostopoulos D (1980): The Bereitschaftspotential in left- and right-handed subjects. In: Motivation, Motor and Sensory Processes of the Brain, Kornhuber HH, Deecke L, eds., Prog Brain Res 54:742–747.

    Google Scholar 

  • Papakostopoulos D, Cooper R, Crow HJ (1975): Inhibition of cortical evoked potentials and sensation by self-initiated movement in man. Nature (London) 258:321–324.

    Article  CAS  Google Scholar 

  • Roland PE (1984): Organization of motor control by the normal human brain. Hum Neurobiol 2:205–216.

    PubMed  CAS  Google Scholar 

  • Roland PE, Larsen B (1976): Focal increase of cerebral blood flow during stereognostic testing in man. Arch Neurol 33:551–558.

    Article  PubMed  CAS  Google Scholar 

  • Roland PE, Larsen B, Lassen NA, Skinhoj E (1980): Supplementary motor area and other cortical areas in organization of voluntary movements in man. J Neurophysiol 43:118–136.

    PubMed  CAS  Google Scholar 

  • Sasaki K, Gemba H (1982): Development and change of cortical field potentials during learning processes of visually initiated hand movements in the monkey. Exp Brain Res 48:429–437.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Gemba H (1986): Effects of premotor cortex cooling upon visually initiated hand movements in the monkey. Brain Res 374:278–286.

    Article  PubMed  CAS  Google Scholar 

  • Steinmetz H, Fürst G, Meyer BU (1989): Craniocerebral topography within the international 10–20 system. Electroencephalogr Clin Neurophysiol 72:499–506.

    Article  PubMed  CAS  Google Scholar 

  • Tarkka IM, Hallett M (1990): Cortical topography of premotor and motor potentials preceding self-paced, voluntary movement of dominant and non-dominant hands. Electroencephalogr Clin Neurophysiol 75:36–43.

    Article  PubMed  CAS  Google Scholar 

  • Vaughn Jr. HG, Bossom J, Gross EG (1970): Cortical motor potentials in monkeys before and after upper limb deafferentiation. Exp Neurol 26:253–262.

    Article  Google Scholar 

  • Walter WG (1964): Slow potential waves in the human brain associated with expectancy, attention and decision. Arch Psychiatr Nervenkr 206:435–449.

    Article  Google Scholar 

  • Whitsel BL, Petrucello LM, Werner G (1969): Symmetry and connectivity in the map of the body surface in somato-sensory area II of primates. J Neurophysiol 183.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Niemann, J., Winker, T., Hufschmidt, A., Lücking, C.H. (1994). The Influence of Hand Movements on Cortical Negative DC Potentials. In: Heinze, HJ., Münte, T.F., Mangun, G.R. (eds) Cognitive Electrophysiology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0283-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0283-7_12

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6693-8

  • Online ISBN: 978-1-4612-0283-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics