Representation Results for Stopping Times in Jump-with-Drift Processes

  • A. A. Yushkevicht
Part of the Progress in Probability book series (PRPR, volume 34)

Abstract

While preparing the paper Dynkin and Yushkevich [6] 39 years ago, we discussed with Eugene B. Dynkin two possible approaches to the notion of a “random variable τ independent from the future,” now known under the name “stopping time.” The final adopted definition in terms of σ-algebras N t generated by evaluations X s , st of the process competed with the desire to work in intuitively more visual terms of sample paths coinciding up to τ. The latter idea obtained an existence in terms of “saturated” concepts in Courrège and Priouret [3] and Meyer [9]; see Proposition 2.1 below.

Keywords

Filtration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Boel, P. Varaiya and E. Wong (1975). Martingales on jump processes I: Representation results, Siam J. Control 13 999–1021.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    O.L.V. Costa and M.H.A. Davis (1989). Impulse control of piecewise deterministic processes, Math. Control Signal Systems 2 187–206.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    P. Courrège and P. Priouret (1965). Temps d’arrêt d’une fonction aléatoire, théorèmes de décomposition, Publ. Inst. Statist. Univ. Paris 14 242–274.Google Scholar
  4. [4]
    M.H.A. Davis (1984). Piecewise-deterministic Markov processes: A general class of non-diffusion stochastic models, J. Roy. Statist. Soc. B 46 353–388.MATHGoogle Scholar
  5. [5]
    M.A.H. Dempster and J.J. Ye (1992). Impulse control of piecewise deterministic Markov processes. Preprint.Google Scholar
  6. [6]
    E.B. Dynkin and A.A. Yushkevich (1956). Strong Markov processes, Theory of Prob. 1 134–139.CrossRefGoogle Scholar
  7. [7]
    M. Kohlmann, A. Makowski and R. Rishel (1980). Representation results for jump processes with application to optimal stopping, Stochastics 4 143–165.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    R.S. Liptser and A.N. Shiryayev (1978). Statistics of Random processes II, Springer-Verlag, Berlin.MATHGoogle Scholar
  9. [9]
    P.A. Meyer (1972). Temps d’arrêt algébriquement prévisibles. In Séminaire de Probabilités VI, Lect. Notes Math. 258 158–163.Google Scholar
  10. [10]
    M. Schäl (1992). Personal communication.Google Scholar
  11. [11]
    A.A. Yushkevich (1987). Bellman inequalities for Markov decision deterministic drift processes, Stochastics 23 25–77.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • A. A. Yushkevicht
    • 1
  1. 1.Department of MathematicsUniversity of North CarolinaCharlotteUSA

Personalised recommendations