Skip to main content

The Differential Geometry of Fedosov’s Quantization

  • Chapter
Lie Theory and Geometry

Part of the book series: Progress in Mathematics ((PM,volume 123))

Abstract

B. Fedosov has given a simple and very natural construction of a deformation quantization for any symplectic manifold, using a flat connection on the bundle of formal Weyl algebras associated to the tangent bundle of a symplectic manifold. The connection is obtained by affinizing, nonlinearizing, and iteratively flattening a given torsion free symplectic connection. In this paper, a classical analog of Fedosov’s operations on connections is analyzed and shown to produce the usual exponential mapping of a linear connection on an ordinary manifold. A symplectic version is also analyzed. Finally, some remarks are made on the implications for deformation quantization of Fedosov’s index theorem on general symplectic manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., and Sternheimer, D., Deformation theory and quantization, I and II, Ann. Phys. 111, (1977), 61–151.

    MathSciNet  Google Scholar 

  2. Berezin, F.A., Quantization, Math USSR Izv. 8 (1974), 1109–1165.

    Article  Google Scholar 

  3. Bohm, D., Quantum Theory, Prentice-Hall, New York, 1951.

    Google Scholar 

  4. Boutet de Monvel, L. and Guillemin, V., The spectral theory of Toeplitz operators, Annals. of Math. Studies 99, Princeton University Press, Princeton, 1981.

    MATH  Google Scholar 

  5. De Wilde, M. and Lecomte, P., Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds, Lett. Math. Phys. 7 (1983), 487–496.

    Article  MathSciNet  MATH  Google Scholar 

  6. Donin, J., On the quantization of Poisson brackets, Advances in Math. (to appear).

    Google Scholar 

  7. Fedosov, B., Formal quantization, Some Topics of Modern Mathematics and their Applications to Problems of Mathematical Physics (in Russian), Moscow (1985), 129–136.

    Google Scholar 

  8. Fedosov, B., Index theorem in the algebra of quantum observables, Sov. Phys. Dokl. 34 (1989), 318–321.

    MathSciNet  Google Scholar 

  9. Fedosov, B.V., Reduction and eigenstates in deformation quantization, Advances in Partial Differential Equations, Akademie Verlag, Berlin (to appear).

    Google Scholar 

  10. Fedosov, B., A simple geometrical construction of deformation quantization, J. Diff. Geom. 30 (1994), 327–333.

    MathSciNet  Google Scholar 

  11. Flato, M., and Sternheimer, D., Closedness of star products and cohomologies, this volume, pp. 241–259.

    Google Scholar 

  12. Kobayashi, S. and Nomizu, K., Foundations of differential geometry, Interscience, New York, 1963.

    MATH  Google Scholar 

  13. Krantz, S.G. and Parks, H.R., A Primer of Real Algebraic Functions, Basler Lehrbücher vol. 4, Birkhäuser, Basel, 1992.

    Google Scholar 

  14. Nest, R. and Tsygan, B., Algebraic index theorem for families, Advances in Math., (to appear).

    Google Scholar 

  15. Omori, H., Maeda, Y., and Yoshioka, A., Weyl manifolds and deformation quantization, Advances in Math. 85 (1991), 224–255.

    Article  MathSciNet  MATH  Google Scholar 

  16. Weinstein, A., Symplectic manifolds and their lagrangian submanifolds, Advances in Math. 6 (1971), 329–346.

    Article  MathSciNet  MATH  Google Scholar 

  17. Weinstein, A., Classical theta functions and quantum tori, Publ. RIMS Kyoto Univ. 30 (1994), 327–333.

    Article  MATH  Google Scholar 

  18. Weinstein, A., Deformation quantization, Séminaire Bourbaki, 46ème année, 1993–94, n° 789, juin 1994 (to appear in Astérisque).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Research supported by Deutsche Forschungsgemeinschaft, Az.: Em 47/1–1.

Research partially supports by NSF Grants DMS-90–01089 and DMS-93–09653.

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Emmrich, C., Weinstein, A. (1994). The Differential Geometry of Fedosov’s Quantization. In: Brylinski, JL., Brylinski, R., Guillemin, V., Kac, V. (eds) Lie Theory and Geometry. Progress in Mathematics, vol 123. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0261-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0261-5_7

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6685-3

  • Online ISBN: 978-1-4612-0261-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics