Skip to main content

Spinor and Oscillator Representations of Quantum Groups

  • Chapter
Book cover Lie Theory and Geometry

Part of the book series: Progress in Mathematics ((PM,volume 123))

Abstract

The theory of quantum groups originates in completely integrable models of statistical mechanics and quantum field theory (see [FRT], [J4]). It becomes a truly mathematical theory with the independent discovery by Drinfeld [Dl] and Jimbo [J1] of a q-deformation of the universal enveloping algebra of an arbitrary Kac-Moody algebra. This remarkable result immediately raised numerous questions about q-deformations of various structures associated to Kac-Moody algebras. A major step in this direction was done by Lusztig [L], who obtained a q-deformation of the category of highest weight representations of Kac-Moody algebras for generic or formal parameter q.

Dedicated to Bertram Kostant

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Birman and H. Wenzl, Braids, link polynomial and a new algebra, Trans, of the American Math. Soc. 1313(1), (1989), 249–273.

    Article  MathSciNet  Google Scholar 

  2. V.V. Bozhanov, Integrable quantum systems and classical Lie algebras, Comm. Math. Phys. 113 (1987), 471–503

    Article  MathSciNet  Google Scholar 

  3. J. Ding and I.B. Prenkel, Isomorphism of two realizations of quantum affine algebra U q (ĝ)(n)), Comm. Math. Phys. 156 (1993), 277–300.

    Article  MathSciNet  MATH  Google Scholar 

  4. V.G. Drinfeld, Hopf algebra and the quantum Yang-Baxter equation, Dokl. Akad. Nauk. SSSR 283 (1985), 1060–1064.

    MathSciNet  Google Scholar 

  5. V.G. Drinfeld, Quantum groups, ICM Proceedings, New York, Berkeley, 1986, 798–820.

    Google Scholar 

  6. V.G. Drinfeld, On almost cocommutative algebras, Leningrad Math. Jour., 1 (1990), 321–342.

    MathSciNet  Google Scholar 

  7. L.D. Faddeev and A.Yu. Volkov, Hirota equation as an example of intergrable symplectic map, Hu-TFT-93–30 1993.

    Google Scholar 

  8. A.J. Feingold and I.B. Frenkel, Classical affine algebras, Adv. in Math. 56 (1985), 117–172.

    Article  MathSciNet  MATH  Google Scholar 

  9. I.B. Frenkel and N. Jing, Vertex representations of quantum affine algebras, Proc. Natl. Acad. Sci., USA 85 (1988), 9373–9377.

    Article  MathSciNet  MATH  Google Scholar 

  10. I.B. Frenkel and N.Yu. Reshetikhin, Quantum affine algebras and holomorphic difference equation, Comm. Math. Phys. 146 (1992), 1–60.

    Article  MathSciNet  MATH  Google Scholar 

  11. T. Hayashi, Q-analogue of Clifford and Weyl algebras — spinor and oscillator representation of quantum enveloping algebras, Comm. Math. Phys. 127 (1990), 129–144.

    Article  MathSciNet  Google Scholar 

  12. A.P. Isaev and P.N. Pyatov, GLq(N)-covaiant quantum algebras and covariant differential calculus, Physics Lett. A 179 (1993), 81–90.

    Article  MathSciNet  Google Scholar 

  13. M. Jimbo, A q-difference analogue of U(g) and Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63–69.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Jimbo, A q-analogue of U q (g (n+1)), Hecke algebra and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), 247–252.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Jimbo, Quantum R-matrix for the generalized Toda systems, Comm. Math. Phys. 102 (1986), 537–548.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Jimbo, Introduction to the Yang-Baxter equation, Int. Jour.of Mod. Phys. A 4 (15), (1990), 3758–3777.

    Google Scholar 

  17. P.P. Kulish, Finite-dimensional Zamolodchikov-Faddeev algebra and q-oscillators, Physics Lett. A 161 (1991), 50–52.

    Article  MathSciNet  Google Scholar 

  18. G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv. Math. 70 (1988), 237–249.

    Article  MathSciNet  MATH  Google Scholar 

  19. W. Pusz and S. Woronowicz, Twisted second quantization, Rep. Math. Phys. 27 (1989), 231–257.

    Article  MathSciNet  MATH  Google Scholar 

  20. N.Yu. Reshetikhin, Quantized universal enveloping algebras, the Yang-Baxter equation and invariants of links I, II, 1987–1988, LOMI, Preprint E-4–87, E-17–87, L: LOMI.

    Google Scholar 

  21. N.Yu. Reshetikhin, L.A. Takhtajan, and L.D. Faddeev, Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990), 193–225.

    MathSciNet  MATH  Google Scholar 

  22. N.Yu. Reshetikhin and M.A. Semenov-Tian-Shansky, Central extensions of quantum current groups, Lett. Math. Phys. 19 (1990), 133–142.

    Article  MathSciNet  MATH  Google Scholar 

  23. F.A. Smirnov, Introduction to quantum groups and integrable massive models of quantum field theory, Nankai Lectures on Mathematical Physics, Mo-Lin Ge, Bao-Heng Zhao(eds.), World Scientific, 1990.

    Google Scholar 

  24. E.B. Vinberg and A.I. Onishchik, Lie groups and algebraic groups, Springer-Verlag, New York 1990.

    MATH  Google Scholar 

  25. J. Wess and B. Zumino, Covariant differential calculus on the quantum hyperplane, Nucl. Phys. B (Proc. Supp.) 18B (1990), 302–312.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ding, J., Frenkel, I.B. (1994). Spinor and Oscillator Representations of Quantum Groups. In: Brylinski, JL., Brylinski, R., Guillemin, V., Kac, V. (eds) Lie Theory and Geometry. Progress in Mathematics, vol 123. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0261-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0261-5_5

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6685-3

  • Online ISBN: 978-1-4612-0261-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics