Skip to main content

Compact Subvarieties in Flag Domains

  • Chapter
Lie Theory and Geometry

Part of the book series: Progress in Mathematics ((PM,volume 123))

Abstract

A real reductive Lie group G 0 acts on complex flag manifolds G/Q, where Q is a parabolic subgroup of the complexification G of G 0. The open orbits D = G 0(x) include the homogeneous complex manifolds of the form G 0/V 0 where V 0= G 0Q x the centralizer of a torus; those are the G 0-homogeneous pseudo-kähler manifolds. For an appropriate choice K 0 maximal compact subgroup of G 0, the orbit Y=K 0(x) is a maximal compact complex submanifold of D. The “cycle space” M D =gYgG and gYD, space of maximal compact linear subvarieties of D, has a natural complex structure. M D plays important roles in the theory of moduli of compact kähler manifolds and in automorphic cohomology theory. Here we sketch a brief exposition of this interesting mathematical topic.

to Bert Kostant on the occasion of his sixty-fifth birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complèxes, Bull. Soc. Math. France 90 (1962), 193–259.

    MathSciNet  MATH  Google Scholar 

  2. A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, I, Amer. J. math. 30 (1958), 458–538.

    Article  MathSciNet  Google Scholar 

  3. A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, II, Amer. J. math. 31 (1959), 315–382.

    Article  MathSciNet  Google Scholar 

  4. H. Bremmermann, Complex convexity, Trans. Amer. Math. Soc. 82 (1956), 17–51.

    Article  MathSciNet  Google Scholar 

  5. A. Frölicher, Zur Differentialgeometrie der komplexen Strukturen, Math. Ann. 129 (1955), 50–95.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Grauert, On Levy’s problem and the imbedding of real-analytic manifolds, Ann. of Math. 68 (1958), 460–472.

    Article  MathSciNet  Google Scholar 

  7. P. A. Griffiths, Periods of integrals on algebraic manifolds, I, Amer. J. Math. 90 (1968), 568–626.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. A. Griffiths, Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems, Bull. Amer. Math. Soc. 76 (1970), 228–296.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. A. Griffiths and W. Schmid, Locally homogeneous complex manifolds, Acta Math. 123 (1969), 253–302.

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Hörmander, An Introduction to Complex Analysis in Several Variables, Van Nostrand, 1966.

    Google Scholar 

  11. P. Lelong, La convexité et les fonctions analytiques de plusiers variables complexes, J. Math. Pures et Appl. 31 (1952), 191–219.

    MathSciNet  MATH  Google Scholar 

  12. W. Schmid, Homogeneous complex manifolds and representations of semisimple Lie groups, thesis, University of California at Berkeley, 1967.

    Google Scholar 

  13. W. Schmid, On a conjecture of Langlands, Annals of Math. 93 (1971), 1–42.

    Article  MATH  Google Scholar 

  14. W. Schmid, L 2 cohomology and the discrete series, Annals of Math 103 (1976), 375–394.

    Article  Google Scholar 

  15. W. Schmid and J. A. Wolf, A vanishing theorem for open orbits on complex flag manifolds, Proc. Amer. Math. Soc. 92 (1984), 461–464.

    Article  MathSciNet  MATH  Google Scholar 

  16. W. Schmid and J. A. Wolf, Geometric quantization and derived functor modules for semisimple Lie groups, J. Funct. Anal. 90 (1990), 48–112.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Tits, Sur certains classes d’espaces homogènes de groupes de Lie, Memoir, Belgian Academy of Sciences, 1955.

    Google Scholar 

  18. J. Tits, Espaces homogènes complexes compacts, Comment. Math. Helv. 37 (1962), 111–120.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. O. Wells, Jr., Parameterizing the compact submanifolds of a period matrix domain by a Stein manifold, in “Symposium on Several Complex Variables”, Park City, Utah, 1970, Springer Lecture Notes in Math. 184, 121–150.

    Chapter  Google Scholar 

  20. R. O. Wells, Jr., and J. A. Wolf, Poincaré series and automorphic cohomology on flag domains, Annals of Math. (1977), 397–448.

    Google Scholar 

  21. F. L. Williams, On the finiteness of the L 2 automorphic cohomology of a flag domain, J. Funct. Anal. 72 (1987), 33–43.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. A. Wolf, The action of a real semisimple group on a complex flag manifold, I: Orbit structure and holomorphic arc components, Bull. Amer. Math. Soc. 75 (1969), 1121–1237.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. A. Wolf, Fine Structure of Hermitian Symmetric Spaces, in “Symmetric Spaces”, ed. W. M. Boothby and G. L. Weiss, Dekker, 1972, 271–357.

    Google Scholar 

  24. J. A. Wolf, The Action of a Real Semisimple Group on a Complex Flag Manifold, II: Unitary Representations on Partially Holomorphic Cohomology Spaces, Memoirs Amer. Math. Soc., No. 138, 1974.

    Google Scholar 

  25. J. A. Wolf, Completeness of Poincaré series for automorphic cohomology, Annals of Math. 109 (1979), 545–567.

    Article  MATH  Google Scholar 

  26. J. A. Wolf, The Stein condition for cycle spaces of open orbits on complex flag manifolds, Annals of Math. 136 (1992), 541–555.

    Article  MATH  Google Scholar 

  27. J. A. Wolf and A. Gray, Homogeneous spaces defined by Lie group automorphisms, I, J. DifF. Geometry 2 (1968), 77–114.

    MathSciNet  MATH  Google Scholar 

  28. J. A. Wolf and A. Gray, Homogeneous spaces defined by Lie group automorphisms, II, J. Diff. Geometry 2 (1968), 115–159.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wolf, J.A. (1994). Compact Subvarieties in Flag Domains. In: Brylinski, JL., Brylinski, R., Guillemin, V., Kac, V. (eds) Lie Theory and Geometry. Progress in Mathematics, vol 123. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0261-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0261-5_22

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6685-3

  • Online ISBN: 978-1-4612-0261-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics