Skip to main content

Recreating the Past by PCR

  • Chapter
The Polymerase Chain Reaction

Abstract

Evolutionists are driven by a desire to find out when and how past populations and species lived and how they were related to each other. Morphologically inclined evolutionists can satisfy this desire by studying fossils. Molecular evolutionists on the other hand, who tend to get the most satisfaction out of nucleic acid sequences, have access only to contemporary sequences and can only indirectly infer what the ancestral sequences may have looked like. To achieve this, phylogenetics has developed into a dynamic and confrontational field. However, when all the analyses is done, molecular evolutionists are left with a gnawing sense of insecurity since what they are left with is only the “most parsimonious” or “most likely” tree. It seems we will never be able to obtain certain knowledge of the past.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ascenzi A, Brunori M, Citro G, Zito R (1985): Immunological detection of hemoglobin in bones of ancient Roman times and of Iron and Eneo-lithic ages. Proc Natl Acad Sci USA 82:7170–7172.

    Article  PubMed  CAS  Google Scholar 

  • Cano RJ, Poinar H, Poinar GO, Jr (1992): Isolation and partial characterization of DNA from the bee Proplebeia dominicana (Apidae: Hymenoptera) in 25–40 million year old amber. Med Sci Res 20:249–251.

    CAS  Google Scholar 

  • Crichton M (1990): Jurassic Park. New York: Knopf.

    Google Scholar 

  • Cooper A, Mourer-Chauviré C, Chambers GK, von Haeseler A, Wilson AC, Pääbo S (1992): Independent origins of New Zealand moas and kiwis. Proc Natl Acad Sci USA 89:8741–8744.

    Article  PubMed  CAS  Google Scholar 

  • Flaherty T, Haigh TJ (1986): Blood groups in mummies. In: Science in Egyptology. David AR, ed. Manchester: Manchester University Press.

    Google Scholar 

  • Golenberg EM, Giannasi DE, Clegg MT, Smiley CJ, Durbin M, Henderson D, Zurawski G (1990): Chloroplast DNA sequence from a Miocene Magnolia species. Nature (London) 344:656–658.

    Article  CAS  Google Scholar 

  • Gillespie JM (1970): Mammoth hair: Stability of keratin structure and constituent proteins. Science 170:1100–1102.

    Article  PubMed  CAS  Google Scholar 

  • Goloubinoff P, Pääbo S, Wilson AC (1992): The evolution of maize according to nuclear DNA sequences from archaeological specimens. Proc Natl Acad Sci USA 90:1997–2001.

    Article  Google Scholar 

  • Hagelberg E, Sykes B, Hedges R (1989): Ancient bone DNA amplified. Nature (London) 342:485.

    Article  CAS  Google Scholar 

  • Hänni C, Laudet V, Sakka M, Bègue A, Stéhelin D (1990): Amplification de fragments dÂDN mitochondrial à partir de dents et dós humains anciens. CR Acad Sci Paris 310, Sér III:365–370.

    Google Scholar 

  • Harrison RG, Connolly RC, Abdalla A (1969): Kinship of Smenkhkare and Tutankhamen demonstrated serologically. Nature (London) 224:325–326.

    Article  CAS  Google Scholar 

  • Helentjaris T (1989): Maize Genet Cooperation News Lett 62:104–105.

    Google Scholar 

  • Higuchi R, Bowman B, Freiberger M, Ryder OA, Wilson AC (1984): DNA sequences from the quagga, an extinct member of the horse family. Nature (London) 312:282–284.

    Article  CAS  Google Scholar 

  • Horai S, Hayasaka K, Murayama K, Wate N, Koike H, Nakai N (1989): DNA amplification from ancient human skeletal remains and their sequence analysis. Proc Jpn Acad 65 B:229–233.

    Google Scholar 

  • Houde P (1988): Paleognateous birds from the Early Tertiary of the Northern Hemisphere. Publ Nuttall Ornitol Club No 22:133.

    Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Wilson AC (1989): Direct sequencing of animal mitochondrial DNA via conserved primer sequences and the polymerase chain reaction. Proc Natl Acad Sci USA 86:6196–6200.

    Article  PubMed  CAS  Google Scholar 

  • Krajewski C, Driskell AC, Baverstock PR, Brown MJ (1992): Phylogenetic relationships of the thylacine (Mammalia: Thylacinidae) among dasyuroid marsupials: evidence from cytochrome b DNA sequences. Proc R Soc London B 250:19–27.

    Article  CAS  Google Scholar 

  • Kwok S (1990): Procedures to minimize PCR-product carry-over. In: PCR-Protocols and Applications—A Laboratory Manual.

    Google Scholar 

  • Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. San Diego: Academic Press.

    Google Scholar 

  • Lawlor DA, Dickel CD, Hauswirth WW, Parham P (1991a): Ancient HLA genes from 7,500-year-old archaeological remains. Nature (London) 349:785–788.

    Article  CAS  Google Scholar 

  • Lindahl T, Nyberg B (1972): Rate of depurination of native deoxyribonucleic acid. Biochemistry 11:3610–3618.

    Article  PubMed  CAS  Google Scholar 

  • Lowenstein JM, Sarich VM, Richardson BJ (1981): Albumin systematics of the extinct mammoth and Tasmanian wolf. Nature (London) 291:409–411.

    Article  CAS  Google Scholar 

  • Mullis KB, Faloona F (1987): Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350.

    Article  PubMed  CAS  Google Scholar 

  • Niklas KJ, Brown RM, Jr (1981): Ultrastructural and paleobiochemical correlations among fossil leaf tissues from the St. Maries River (Clarkia) area, Northern Idaho, USA. Am J Bot 68(3):332–341.

    Article  Google Scholar 

  • Pääbo S (1985): Cloning of ancient Egyptian mummy DNA. Nature (London) 314:644–645.

    Article  Google Scholar 

  • Pääbo S (1989): Ancient DNA; extraction, characterization, molecular cloning and enzymatic amplification. Proc Natl Acad Sci USA 86:1939–1943.

    Article  PubMed  Google Scholar 

  • Pääbo S (1990): Amplifying ancient DNA. In: PCR-Protocols and Applications—A Laboratory Manual. Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. San Diego: Academic Press.

    Google Scholar 

  • Pääbo S (1993): Ancient DNA. Sci Am 269:86–92.

    Article  PubMed  Google Scholar 

  • Pääbo S, Wilson AC (1988): Polymerase chain reaction reveals cloning artefacts. Nature (London) 334:387–388.

    Article  Google Scholar 

  • Pääbo S, Wilson AC (1991): Miocene DNA sequences—A dream come true? Current Biol 1:45–46.

    Article  Google Scholar 

  • Pääbo S, Gifford JA, Wilson AC (1988): Mitochondrial DNA sequences from a 7000-year-old brain. Nucl Acids Res 16(20):9775–9787.

    Article  PubMed  Google Scholar 

  • Pääbo S, Higuchi RG, Wilson AC (1989): Ancient DNA and the polymerase chain reaction: The emerging field of molecular archaeology. J Biol Chem 264:9709–9712.

    PubMed  Google Scholar 

  • Pääbo S, Irwin DM, Wilson AC (1990): DNA damage promotes jumping between templates during enzymatic amplification. J Biol Chem 265:4718–4721.

    PubMed  Google Scholar 

  • Pääbo S, Wayne R, Thomas R (1992): On the use of museum collections for molecular genetic studies. Ancient DNA Newslett 1:4–5.

    Google Scholar 

  • Poinar GO, Jr, Hess R (1982): Ultrastructure of 40-million-year-old insect tissue. Science 215:1241–1242.

    Article  PubMed  Google Scholar 

  • Prager EM, Lowenstein JM, Sarich VM (1980): Mammoth albumin. Science 209:287–289.

    Article  PubMed  CAS  Google Scholar 

  • Rollo F (1991): Nucleic acids in mummified plant seeds: Biochemistry and molecular genetics of pre-Columbian maize. Genet Res 58:193–201.

    Article  PubMed  CAS  Google Scholar 

  • Sidow A, Wilson AC, Pääbo S (1991): Bacterial DNA from Clarkia fossils. Phil Trans R Soc B 333:429–433.

    Article  PubMed  CAS  Google Scholar 

  • Soltis PS, Soltis DE, Smiley CJ (1992): An rbcL sequence from a Miocene Taxodium (bald cypress). Proc Natl Acad Sci USA 89:449–451.

    Article  PubMed  CAS  Google Scholar 

  • Thomas RH, Schaffner W, Wilson AC, Pääbo S (1989): DNA phylogeny of the extinct marsupial wolf. Nature (London) 340:465–467.

    Article  CAS  Google Scholar 

  • Thomas WK, Pääbo S, Villabianca FX, Wilson AC (1990): Spatial and temporal continuity of kangaroo rat populations shown by sequencing mitochondrial DNA from museum specimens. J Mol Evol 31:101–112.

    Article  PubMed  CAS  Google Scholar 

  • Wrischnik LA, Higuchi RG, Stoneking M, Erlich HA, Arnheim N, Wilson AC (1987): Length mutations in human mitochondrial DNA: Direct sequencing of enzymatically amplified DNA. Nucl Acids Res 15:529–542.

    Article  PubMed  CAS  Google Scholar 

  • Wyckoff RWG (1972): The Biochemistry of Animal Fossils. Bristol, UK: Scientechnica.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Höss, M., Handt, O., Pääbo, S. (1994). Recreating the Past by PCR. In: Mullis, K.B., Ferré, F., Gibbs, R.A. (eds) The Polymerase Chain Reaction. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0257-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0257-8_22

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-3750-7

  • Online ISBN: 978-1-4612-0257-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics