Skip to main content

On the “quantum disk” and a “non-commutative circle”

  • Conference paper
Algebraic Methods in Operator Theory

Abstract

Let T q be the universal C*-aIgebra generated by an element zsatisfying the equation:

$$z{{z}^{*}} = q{{z}^{*}} + \left( {1 - q} \right)I$$

where q ∈ [-1, 1] is a parameter. We show that, in contrast to T q for -1 < q < 1, which is known to be the Toeplitz algebra, T -1 is a (stably) finite C*-algebra, embeddedable into \({{M}_{2}} \otimes C\left( {\bar{D}} \right)\). We prove the continuity of the field (T q )-1≤q≤1, by using a remarkable continuous field of states, \(\left( {{{\phi }_{q}}} \right) - 1{{ \leqslant }_{q}} \leqslant 1\). \(\left( {{{\phi }_{q}}} \right) - 1{{ \leqslant }_{q}} \leqslant 1\). is a faithful trace-state of T -1. For q > 0, \(\phi - 1\) is the restriction to T q of the Haar measure on the quantum group S q U(2). The distribution (with respect to \({{\phi }_{q}}\) of the real part of the generator z is deformed from the semicircle law \(\frac{2}{\pi }\sqrt {{1 - {{t}^{2}}dt}}\), at q = 0, to |t|dt, at q = -1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.E. Andrews, q-series: their development and application in analysis, number theory, combinatorics, physics and computer algebra, Regional conference series in mathematics No.66, 1986 (published by the American Math. Society).

    Google Scholar 

  2. L.C. Biedenharn. The quantum group SUq(2) and a q-analogue of the boson operators, Journ. of Phys. A, 22 (1989), L873–878.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Bozejko, R. Speicher. An example of a generalized Brownian motion, part I-in Commun. Math. Phys. 137 (1991), 519–531, part II in Quantum Probability and related topics VII, Proceedings New Delhi 1990, 67-77.

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Coburn. The C*-algebra generated by an isometry, Bull. Amer. Math. Soc. 73 (1967), 722–726.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Dixmier. Les C*-algebres et leurs representations, Gauthier-Villars, 1969.

    Google Scholar 

  6. P.E.T. Jorgensen, L.M. Schmitt, R.F. Werner, q-canonical commutation relations and stability of the Cuntz algebra, to appear in the Pacific Journal of Mathematics.

    Google Scholar 

  7. S. Klimek and A. Lesniewski. Quantum Riemann surfaces I. The unit disk, preprint 1991.

    Google Scholar 

  8. A.J. Macfarlane. On q-analogues of the quantum harmonic oscillator and the quantum group SU(2)q, Journ. of Phys. A, 22 (1989), 4581–4588.

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Nagy. On the Haar measure of the quantum SU(N) group, to appear in Commun. Math. Phys.

    Google Scholar 

  10. G. Nagy. Thesis, Berkeley 1992.

    Google Scholar 

  11. G.K. Pedersen. Measure theory for C*-algebras II, Math. Scand. 22 (1968), 63–74.

    Article  MathSciNet  Google Scholar 

  12. M. Rieffel. Continuous fields of C*-algebras coming from group cocycles and actions, Mathematische Annalen, 283 (1989), 631–643.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. L.-J. Sheu. Quantization of the Poisson SU(2) and its Poisson homogenous space — the 2-sphere, Commun. Math. Phys. 135 (1991), 217–232.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Voiculescu. Symmetries of some reduced free product C*-algebras, in Operator algebras and their connection with topology and ergodic theory, Busteni 1983 (Springer Lecture Notes on Mathematics No 1132).

    Google Scholar 

  15. D. Voiculescu. Free non-commutative random variables, random matrices and the II1factors of free groups, in Quantum probability and related topics VI (L. Accardi, editor), 1991, 473–487.

    Google Scholar 

  16. S.L. Woronowicz. Twisted SU(2) group. An example of a non-commutative differential calculus, Publ. RIMS 23 (1987), 117–181.

    Article  MathSciNet  MATH  Google Scholar 

  17. S.L Woronowicz. Compact matrix pseudogroups, Commun. Math. Phys. 111 (1987), 613–665.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this paper

Cite this paper

Nagy, G., Nica, A. (1994). On the “quantum disk” and a “non-commutative circle”. In: Curto, R.E., Jørgensen, P.E.T. (eds) Algebraic Methods in Operator Theory. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0255-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0255-4_27

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6683-9

  • Online ISBN: 978-1-4612-0255-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics