Skip to main content

Multiple Wiener-ITÔ Integral Processes with Sample Paths in Banach Function Spaces

  • Conference paper
Probability in Banach Spaces, 9

Part of the book series: Progress in Probability ((PRPR,volume 35))

  • 606 Accesses

Abstract

Fix an integer m ≥ 1. Consider a measurable stochastic process I m which has a representation in terms of m-th multiple Wiener-Itô integrals I m(ht), tT, of a time dependent kernel h. Namely, let I m = {I m(h t);tT} with

$$I_m(h_t)=\int \cdots \int h_t(x_1,\cdots,x_m)G(dx_1)\cdots G(dx_m),\;\;\;\;\;t \in T,$$

where h = h t = {h(t, ·); t ∈ T} is a family of square summable functions defined on the product measure space (X m, v m) and G is a Gaussian random measure with the control measure v. The problem we study in this paper is as follows: given a measurable function h on T × X m and given a Banach function space F(T, μ) of measurable functions on a separable σ-finite measure space (T,μ), when does

$$I_m \in F(T,\mu)\;\;\;\;\;\;almost\;surely(a.s.)?\;\;\;\;\;\;\;(1.1)$$

If m = 1 then I 1 is a Gaussian process with the covariance function

$$T\times T \ni (t,s) \mapsto \int_X h_t(x) h_s(x)\nu (dx)$$

.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arcones, M. A., and Giné, E. (1993). On decoupling, series expansions, and tail behavior of chaos processes. J. Multivariate Anal 6, 101–122.

    MATH  Google Scholar 

  • Bukhvalov, A. V., Korotkov, V. B. Kusraev, A. G., Kutateladze, S. S. and Makarov, B. M. (1991). Vector lattices and integral operators; Nauka, Novosibirsk. (In Russian).

    MATH  Google Scholar 

  • Dettweiler, E. (1985). Stochastic integration of Banach space valued functions. In Arnold, L., Kotelenez, P. (Eds.) Stochastic Space-Time Models and Limit Theories, pp. 53–79; D. Reidel, Dordrecht.

    Chapter  Google Scholar 

  • Diestel, J. (1975). Geometry of Banach spaces. Selected Topics. Lect. Notes Math. 485; Springer-Verlag, Berlin.

    Google Scholar 

  • Edgar, G. (1977). Measurability in a Banach space. Indiana Math. J. 26, 663–677.

    Article  MathSciNet  MATH  Google Scholar 

  • Gorgadze, Z. G., Tarieladze, V. I. and Čobanjan, S. A. (1978). Gaussian covariances in Banach sublattices of the space L 0(T, Σ, v). Dokl. Akad. Nauk SSSR 241, 528–531. (In Russian). (Engl. transl. in Soviet Math. Dokl. 1978, 19, 885–888).

    MathSciNet  Google Scholar 

  • Gretsky, N. E. and J. J. Uhl, Jr. (1981). Carleman and Korotkov operators on Banach spaces. Acta Sci. Math. 43, 207–218.

    MathSciNet  MATH  Google Scholar 

  • Itô, K. (1951). Multiple Wiener integral. J. Math. Soc. Japan 3, 157–169.

    Article  MathSciNet  MATH  Google Scholar 

  • Kahane, J. P. (1968). Some Random Series of Functions; D. C. Heath, Lexington, Massachusetts.

    MATH  Google Scholar 

  • Krakowiak, W. and Szulga, J. (1986). Random multilinear forms. Ann. Probab. 14, 955–973.

    Article  MathSciNet  MATH  Google Scholar 

  • Krakowiak, W. and Szulga, J. (1988). Hypercontraction principle and random multilinear forms. Probab. Th. Rel. Fields 73, 325–342.

    Article  MathSciNet  Google Scholar 

  • Krivine, J. L. (1976). Sous-espaces de dimension finie des espaces de Banach réticulés. Ann. of Math. 104, 1–29.

    Article  MathSciNet  MATH  Google Scholar 

  • Kwapień, S. (1987). Decoupling inequalities for polynomial chaos. Ann. Probab. 15, 1062–1071.

    Article  MathSciNet  MATH  Google Scholar 

  • Ledoux, M. and Talagrand M. (1991). Probability in Banach spaces. Isoperime-try and processes; Springer-Verlag, Berlin.

    Google Scholar 

  • Lindenstrauss, J. and Tzafriri, L. (1979). Classical Banach Spaces II. Function spaces; Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Major, P. (1981). Multipie Wiener-Itô integrals. Lect. Notes Math. 849; Springer-Verlag, Berlin.

    Google Scholar 

  • Maurey, B. (1974a). Type et cotype dans les espaces munis de structures locales inconditionnelles. Séminaire Maurey-Schwartz (1973/1974), exposés 24–25; École Polytechnique, Paris.

    Google Scholar 

  • Maurey, B. (1974b). Thèorémes de factorisation pour les Opérateurs linéaires à valeurs dans les espaces L p. Asterisque, Soc. Math. France 11.

    Google Scholar 

  • Maurey, B. and Pisier, G. (1973). Caractérisation d’une classe d’espaces de Banach par des propriétés de séries aléatoires vectorielles. C. R. Acad. Sc. Paris Série A, 277, 687–690.

    MathSciNet  MATH  Google Scholar 

  • Maurey, B. and Pisier, G. (1976). Séries de variables aleatoires vectorielles independantes et propriétés geometriques des espaces de Banach. Studia Math. 58, 45–90.

    MathSciNet  MATH  Google Scholar 

  • Norvaiša, R. (1991). Poisson and Brownian motion random functions with applications. Preprint 13 pp. 56; Inst. Math. Inform., Vilnius.

    Google Scholar 

  • Norvaiša, R. and Samorodnitsky, G. (1992). Stable processes with sample paths in Orlicz spaces. Ann. Probab. (to appear).

    Google Scholar 

  • Persson, A. (1969). On some properties of p-nuclear and p-integral operators. Studia Math. 33, 213–222.

    MathSciNet  MATH  Google Scholar 

  • Rosiński, J., Samorodnitsky, G. and Taqqu, M.S. (1991). Sample path properties of stochastic processes represented in the form of multiple stable integrals. J. Multivariate Anal. 37, 115–133.

    Article  MathSciNet  MATH  Google Scholar 

  • Rosiński, J., and Woyczyński, W. A. (1985). On Itô stochastic integral with respect to p-stable motion, inner clock, integrability of sample paths, double and multiple integrals. Ann. Probab. 14, 271–286.

    Article  Google Scholar 

  • Schwarz, H.-U. (1984). Banach lattices and operators. Teubner-Texte zur Math., Band 71; BSB B. G. Teubner Verlagsgesellschaft, Leipzig.

    Google Scholar 

  • Vahania, N. N., Tarieladze, V. I. and Chobanyan, S. A. (1987). Probability Distributions on Banach Spaces. Mathematics and Its Applications (Soviet Series); Reidel, Dordrecht.

    Google Scholar 

  • Tarieladze, V. I. (1991). On Gaussian covariances in Banach lattices of measurable functions. Manuscript (unpublished).

    Google Scholar 

  • Wong T. K. (1974). Absolutely p-summing operators and p-decomposable operators. Bull. Inst. Math. Acad. Sinica 2, 29–41.

    MathSciNet  MATH  Google Scholar 

  • Zaanen, A.C.(1983). Riesz spaces II; North-Holand Publishing Company, Amsterdam.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this paper

Cite this paper

Norvaiša, R. (1994). Multiple Wiener-ITÔ Integral Processes with Sample Paths in Banach Function Spaces. In: Hoffmann-Jørgensen, J., Kuelbs, J., Marcus, M.B. (eds) Probability in Banach Spaces, 9. Progress in Probability, vol 35. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0253-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0253-0_22

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6682-2

  • Online ISBN: 978-1-4612-0253-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics