Skip to main content

Burgers’ Topology on Random Point Measures

  • Conference paper
Probability in Banach Spaces, 9

Part of the book series: Progress in Probability ((PRPR,volume 35))

Abstract

The Burgers’ equation

$$\partial _tu+u\partial _xu=\mu\partial_x^2u,\;\;\;\;\;\;\;\;\;\;\;(1.1)$$

t < 0,xR, u = u(t,x),u(0,x) = u 0(x), admits the well-known Hopf-Cole explicit solution

$$u(t,x)=\frac{\int _{-\infty }^\infty[(x-y)/t]\exp[(2\mu)^{-1}(\xi(y)-(x-y)^2/2t)]dy}{\int _{-\infty }^\infty \exp[(2\mu)^{-1}(\xi(y)-(x-y)^2/2t)]dy}\;\;\;\;\;\;\;\;\;\;(1.2)$$

where \(\xi (x)=-\int_{x}^{-\infty } u_0(y)dy\) (see Hopf (1950)). It describes propagation of nonlinear hyperbolic waves, and has been considered as a model equation for hydrodynamic turbulence (see e.g. Chorin (1975)). Due to nonlinearity, the solution (1.2) enters several different stages, including that of shock waves’ formation, which are largely determined by the value of the Reynolds number R = σl/μ (see Gurbatov, Malakhov, Saichev (1991)). Here, μ < 0 is the viscosity parameter, while σ and l have the physical meaning of characteristic scale and amplitude of ξ(x), respectively.

Supported, in part, by grants from ONR and NSF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler R.J. (1978), Weak convergence results for extremal processes generated by dependent random variables, Annals of Probability 6, 660–667.

    Article  MathSciNet  MATH  Google Scholar 

  2. Albeverio S., Molchanov S.A., Surgailis D. (1993), Stratified structure of the Universe and Burgers’ equation: a probabilistic approach, preprint.

    Google Scholar 

  3. Bulinskii A.V., Molchanov S.A. (1991), Asymptotic Gaussianness of solutions of the Burgers’ equation with random initial data, Teorya Veroyat. Prim. 36, 217–235.

    MathSciNet  Google Scholar 

  4. Burgers J. (1974), The Nonlinear Diffusion Equation, Dordrecht.

    Google Scholar 

  5. Chorin A.J. (1975), Lectures on Turbulence Theory, Publish or Perish, Inc.

    Google Scholar 

  6. Fournier J.-D., Frisch U. (1983), L’equation de Burgers déterministe et statistique, J. Mec. Theor. Appl. 2, 699–750.

    MathSciNet  MATH  Google Scholar 

  7. Funaki T., Surgailis D., Woyczynski W.A. (1993), Gibbs-Cox random fields and Burgers’ turbulence, Ann. Applied Probability, to appear.

    Google Scholar 

  8. Gurbatov S., Malakhov A. and Saichev A. (1991), Nonlinear Random, Waves and Turbulence in Nondispersive Media: Waves, Rays and Particles, Manchester University Press.

    Google Scholar 

  9. Hopf E. (1950), The partial differential equation u t+uux = μuxx, Cornrn. Pure Appl. Math 3, 201.

    Article  MathSciNet  MATH  Google Scholar 

  10. Hu Y., Woyczynski W.A. (1994), An extremal rearrangement property of statistical solutions of the Burgers’ equation, Ann. Applied Probability, to appear.

    Google Scholar 

  11. Kallenberg O. (1983), Random Measures, Academic Press.

    Google Scholar 

  12. Kraichnan R.H. (1968), Lagrangian-history statistical theory for Burgers’ equation, Physics of Fluids 11, 265–277.

    Article  MathSciNet  MATH  Google Scholar 

  13. Kraichnan R.H. (1959), The structure of isotropic turbulence at very high Reynolds numbers, J. Fluid Mech. 5, 497–543.

    Article  MathSciNet  MATH  Google Scholar 

  14. Kwapien S., Woyczynski W.A. (1992) Random Series and Stochastic Integrals: Single and Multiple, Birkhäuser-Boston.

    Google Scholar 

  15. Leadbetter M.R., Lindgren G., Rootzen H. (1983) Extremes and Related Properties of Random Sequences and Processes, Springer-Verlag.

    Google Scholar 

  16. Molchanov S., Surgailis D., Woyczynski W.A. (1994), Intermediate asymptotics of statistical solutions of the Burgers’ equation, Coram. Math. Physics, to appear.

    Google Scholar 

  17. Rice S.O. (1945), Mathematical analysis of random noise, Bell System Tech. J. 24, 46–156.

    MathSciNet  MATH  Google Scholar 

  18. Shandarin S.F., Zeldovich Ya.B. (1989), Turbulence, intermittency, structures in a self-gravitating medium: the large scale structure of the Universe, Rev. Modern Phys. 61, 185–220.

    Article  MathSciNet  Google Scholar 

  19. Sinai Ya.G. (1992), Two results concerning asymptotic behavior of solutions of the Burgers equation with force, J. Stat. Phys. 64, 1–12.

    Article  MathSciNet  Google Scholar 

  20. Sinai Ya.G. (1992), Statistics of shocks in solutions of inviscid Burgers’ equation, Commun. Math. Phys. 148, 601–621.

    Article  MathSciNet  MATH  Google Scholar 

  21. Surgailis D., Woyczynski W.A., Scaling limits of solutions of the Burgers’ equation with singular Gaussian initial data, Proc. Workshop on Multiple Wiener-Ito Integrals and Their Applications, Guanajuato, Mexico, 1992, Birkhauser, 1993, to appear.

    Google Scholar 

  22. Woyczynski W.A. (1993), Stochastic Burgers’ Flows, in Nonlinear Waves and Weak Turbulence, Birkhauser-Boston, pp. 279–311.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this paper

Cite this paper

Surgailis, D., Woyczynski, W.A. (1994). Burgers’ Topology on Random Point Measures. In: Hoffmann-Jørgensen, J., Kuelbs, J., Marcus, M.B. (eds) Probability in Banach Spaces, 9. Progress in Probability, vol 35. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0253-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0253-0_13

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6682-2

  • Online ISBN: 978-1-4612-0253-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics