Skip to main content

Routine Cell Culture

  • Chapter
Tissue Culture Techniques

Abstract

Consistent schedules for feeding and subcultivation, if the latter is a necessary part of your experiments, are essential routines to adopt. Haphazard feeding routines developed because of the “I don’t have time” excuse will result in cultures that have unbalanced nutrition and wide swings in waste content. The data gathered from such cultures and the products produced by them will also have wide fluctuations, and probably will not be very reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barone LM, Faris B, Chipman SD, Toselli P, Oakes B, Franzblau C (1985): Alteration of the extracellular matrix of smooth muscle cells by ascorbate treatment. Biochim Biophys Acta 840:245–254

    Article  PubMed  CAS  Google Scholar 

  • Burgess WH, MaciagT (1989): The heparin-binding (fibroblast) growth factor family of proteins. Annu Rev Biochem 58:575–606

    Article  PubMed  CAS  Google Scholar 

  • Eagle H (1955): Nutrition needs of mammalian cells in tissue culture. Science 122:501–504

    Article  PubMed  CAS  Google Scholar 

  • Gershenfeld L (1977): Iodine. In: Disinfection, Sterilization and Preservation, Block SS, ed. Philadelphia: Lea & Febiger

    Google Scholar 

  • Gimbrone MA Jr (1976): Culture of vascular endothelium. In: Progress in Hemostasis and Thrombosis, Spaet TH, ed. New York: Grune & Stratton

    Google Scholar 

  • Good NE, Winget GD, Winter W, Connolly TN (1966): Hydrogen ion buffers for biological research. Biochemistry 5:467–477

    Article  PubMed  CAS  Google Scholar 

  • Greene LA, Tischler AS (1976): Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73:2424–2428

    Article  PubMed  CAS  Google Scholar 

  • Harlow E, Lane D (1988a): Immunoassay. In: Antibodies. A Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Laboratory

    Google Scholar 

  • Harlow E, Lane D (1988b): Antibodies. A Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Laboratory

    Google Scholar 

  • Kapuscinski J, Skoczylas B (1978): Fluorescent complexes of DNA with DAPI 4′, 6- diamidine-2-phenyl indol.2HCl or DCI 4′,6-dicarboxyamide-2-phenyl indol. Nucleic Acids Res 5:3775–3799

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann J, Jorgensen RW, Martin BM, Franzblau C (1990): Monocyte activation by smooth muscle cell-derived matrices. Atherosclerosis 85:113–125

    Article  PubMed  CAS  Google Scholar 

  • Klieneberger-Nobel E (1962): Pleuropneumonia-Like Organisms (PPLO), Mycoplasmataceae. New York: Academic Press

    Google Scholar 

  • Lydon MJ, Keeler KD, Thomas DB (1980): Vital DNA staining and cell sorting by flow microfluorometry. J Cell Physiol 102:175–181

    Article  PubMed  CAS  Google Scholar 

  • Martin BM, Gimbrone MA Jr, Majeau GR, Unanue ER, Cotran RS (1983): Stimulation of monocyte/macrophage-derived growth factor (MDGF) production by plasma fibronectin. Am J Pathol 111:367–373

    PubMed  CAS  Google Scholar 

  • Mather J, Kaczarowski F, Gabler R, Wilkins F (1986): Effects of water purity and addition of common water contaminants on the growth of cells in serum-free media. Bio Technology 4:56–63

    CAS  Google Scholar 

  • Moore GE, Gerner RE, Franklin HA (1967): Culture of normal human leukocytes. JAMA 199:519–524

    Article  PubMed  CAS  Google Scholar 

  • Oakes BW, Batty AC, Handley CJ, Sandberg LB (1982): The synthesis of elastin, collagen, and glycosaminoglycans by high density primary cultures of neonatal rat aortic smooth muscle. An ultrastructural and biochemical study. Eur J Cell Biol 27:34–46

    PubMed  CAS  Google Scholar 

  • Preece A (1972): A Manual for Histologic Technicians. Boston: Little, Brown

    Google Scholar 

  • Rasheed S, Nelson-Rees WA, Toth EM, Arnstein RGardner MB (1974): Characterization of a newly derived human sarcoma cell line (HT-1080). Cancer 33:1027–1033

    Article  PubMed  CAS  Google Scholar 

  • Richardson UI, Tashjian AH Jr, Levine L (1969): Establishment of a clonal strain of hepatoma cells which secrete albumin.J Cell Biol 40:236–247

    Article  PubMed  CAS  Google Scholar 

  • Roberts AB, Sporn MB (1989): Principles of molecular cell biology of cancer: Growth factors related to transformation. Cancer: Principles and Practice of Oncology, DeVita VT Jr, Hellman S, and Rosenberg SA, ed. Philadelphia: JB Lippincott

    Google Scholar 

  • Roberts AB, Sporn MB (1990): The transforming growth factors-β. In: Peptide Growth Factors and Their Receptors, Sporn MB, Roberts AB, eds. Heidelberg: Springer-Verlag

    Google Scholar 

  • Ross R (1971): The smooth muscle cell II. Growth of smooth muscle in culture and formation of elastic fibers. J Cell Biol 50:172–186

    Article  PubMed  CAS  Google Scholar 

  • Ross R, Raines EW, Bowen-Pope DF (1986): The biology of platelet-derived growth factor. Cell 46:155–169

    Article  PubMed  CAS  Google Scholar 

  • Todaro GJ, Green H (1963): Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines.J Cell Biol 17:299–313

    Article  PubMed  CAS  Google Scholar 

  • Williamson DH, Fennell DJ (1975): The use of fluorescent DNA-binding agent for detecting and separating yeast mitochondrial DNA. In: Methods in Cell Biology, Prescott DM, ed. New York: Academic Press

    Google Scholar 

  • Zapf J, Froesch ER, Humbel R (1981): The insulin-like growth factors (IGF) of human serum: Chemical and biological characterization and aspects of their possible physiological role. Curr Top Cell Regul 19:257–309

    PubMed  CAS  Google Scholar 

Suggested Readings, Cell Culture

  • Paul J (1975): Cell and Tissue Culture. Edinburgh, Scotland: Livingstone (general)

    Google Scholar 

  • Freshney RI (1987): Culture of Animal Cells. A Manual of Basic Techniques. New York: Liss (general)

    Google Scholar 

  • Jakoby WB, Pastan IH, eds (1979): Methods in Enzymology. New York: Academic Press (general, cell-specific methods)

    Google Scholar 

  • Freshney RI (1986): Animal Cell Culture. A Practical Approach. Oxford: IRL Press (detailed advanced topics)

    Google Scholar 

  • Conn MP, ed (1990): Cell Culture in Methods in Neurosciences. San Diego: Academic Press (specialized for brain, but broad applications of advanced methodology)

    Google Scholar 

Suggested Readings, Understanding Microorganisms and Their Control

  • Davis BD, Dulbecco R, Eisen HN, Ginsberg HS (1980): Microbiology Including Immunology and Molecular Genetics. Hagerstown: Harper & Row

    Google Scholar 

  • Joklik WK, Willett HP, Amos DB, Wilfert, CM, eds (1992): Zinsser Microbiology. Norwalk: Appleton & Lange.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martin, B.M. (1994). Routine Cell Culture. In: Tissue Culture Techniques. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0247-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0247-9_3

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-3643-2

  • Online ISBN: 978-1-4612-0247-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics