Skip to main content

Stationary Equilibria for Nonzero-Sum Average Payoff Ergodic Stochastic Games with General State Space

  • Conference paper
Advances in Dynamic Games and Applications

Part of the book series: Annals of the International Society of Dynamic Games ((AISDG,volume 1))

Abstract

This paper treats of nonzero-sum average payoff stochastic games with arbitrary state spaces. Such models of games very well fit in some studies in economic theory. A natural uniform geometric ergodicity condition, often used in control theory of Markov chains, is imposed on the transition probabilities of the games. A correlation of strategies of the players, involving “public signals”, is allowed in this paper. The main result is an extension of the correlated equilibrium theorem proved recently by the author and Raghavan for dynamic games with discounting to the average payoff stochastic games. Also some special classes of games that possess Nash equilibria without public signals are discussed. This paper also provides a brief overview of the theory of nonzero-sum stochastic games which is very far from being complete.

AMS 1980 Subject Classification. Primary:90D15, Secondary: 93C30.

AMS 1980 Subject Classification, Primary:90D15, Secondary: 93C30.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. D. Rogers, Nonzero-Sum Stochastic Games. PhD thesis, University of California, Berkeley, 1969. Report ORC 69–8.

    Google Scholar 

  2. M. Sobel, “Noncooperative stochastic games,” Ann. Math. Statist., vol. 42, pp. 1930– 1935, 1971.

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Parthasarathy and T. E. S. Raghavan, “An orderfield property for stochastic games when one player controls transition probabilities,” J. Optim. Theory Appl., vol. 33, pp. 375 -392, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Thuijsman, Optimality and Equilibria in Stochastic Games. PhD thesis, University of Limburg, Maastricht, The Netherlands, 1989.

    Google Scholar 

  5. O.J. Vrieze and F. Thuijsman, “On equilibria in repeated games with absorbing states,” Internat. J. Game Theory, vol. 18, pp. 293 -310, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Parthasarathy, “Discounted, positive, and non-cooperative stochastic games,” Internat. J. Game Theory, vol. 2, pp. 25 -37, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Federgruen, “On n-person stochastic games with denumerable state space,” Adv. Appl. Probab., vol. 10, pp. 452 -471, 1978.

    Article  MathSciNet  Google Scholar 

  8. A. S. Nowak, “Stationary overtaking equilibria for non-zero-sum stochastic games with countable state spaces,” mimeo, 1992.

    Google Scholar 

  9. D. Duffie, J. Geanakoplos, A. Mas-Colell, and A. McLennan,Stationary Markov equilibria,Technical Report, Dept. of EconomicsHarvard University,1988.

    Google Scholar 

  10. P. K. Dutta, “What do discounted optima converge to? A theory of discount rate asymptotics in economics models,” J. Economic Theory, vol. 55, pp. 64–94, 1991.

    Article  MATH  Google Scholar 

  11. I. Karatzas, M. Shubik, and W. D. Sudderth, “Construction of stationary Markov equilibria in a strategic market game,” Technical Report 92-05-022, Santa Fe Institute Working Paper, Santa Fe, New Mexico, 1992.

    Google Scholar 

  12. M. Majumdar and R. Sundaram, “Symmetric stochastic games of resource extraction: The existence of non-randomized stationary equilibrium,” in Stochastic Games and Related Topics, pp. 175 -190, Dordrecht, The Netherlands: Kluwer Academic Publishers, 1991.

    Chapter  Google Scholar 

  13. P. K. Dutta and R. Sundaram, “Markovian equilibrium in a class of stochastic games: Existence theorems for discounted and undiscounted models,” Economic Theory, vol. 2, 1992.

    Google Scholar 

  14. H. C. Lai and K. Tanaka, “A noncooperative n-person semi-Markov game with a separable metric state space,” Appl. Math. Optim., vol. 11, pp. 23–42, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  15. H. C. Lai and K. Tanaka, “On an n-person noncooperative Markov game with a metric state space,” J. Math. Anal. Appl., vol. 101, pp. 78 -96, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. K. Ghosh and A. Bagchi, “Stochastic games with average payoff criterion,” Technical Report 985, Faculty of Applied Mathematics, University of Twente, Enschede, The Netherlands, 1991.

    Google Scholar 

  17. C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, vol. 580 of Lecture Notes in Mathematics. New York: Springer-Verlag, 1977.

    Google Scholar 

  18. A. S. Nowak and T. E. S. Raghavan, “Existence of stationary correlated equilibria with symmetric information for discounted stochastic games,” Math. Oper. Res., vol. 17, pp. 519 -526, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control: The Discrete Time Case. New York: Academic Press, 1978.

    MATH  Google Scholar 

  20. C. J. Himmelberg, T. Parthasarathy, T. E. S. Raghavan, and F. S. van Vleck, “Existence of p-equilibrium and optimal stationary strategies in stochastic games,” Proc. Amer. Math. Soc., vol. 60, pp. 245 -251, 1976.

    MathSciNet  Google Scholar 

  21. W. Whitt, “Representation and approximation of noncooperative sequential games,” SIAM J. Control Optim., vol. 18, pp. 33 -48, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. S. Nowak, “Existence of equilibrium stationary strategies in discounted noncooperative stochastic games with uncountable state space,” J. Optim. Theory Appl., vol. 45, pp. 591 -602, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Breton and P. L’Ecuyer, “Noncooperative stochastic games under a n-stage local contraction assumption,” Stochastics and Stochastic Reports, vol. 26, pp. 227 -245, 1989.

    MathSciNet  MATH  Google Scholar 

  24. J.-F. Mertens and T. Parthasarathy, “Equilibria for discounted stochastic games,” Technical Report 8750, CORE Discussion Paper, Université Catholique de Louvain, 1987.

    Google Scholar 

  25. C. Harris, “The existence of subgame-perfect equilibrium in games with simultaneous moves: a case for extensive-form correlation,” mimeo, Nuffield College, Oxford, U.K., 1990.

    Google Scholar 

  26. F. Forges, “An approach to communication equilibria,” Econometrica, vol. 54, pp. 1375 -1385, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  27. R. L. Tweedie, “Criteria for rates of convergence of Markov chains, with an application to queueing and storage theory,” in Papers in Probability Statistics and Analysis (J. F. C. Kingman and G. E. H. Reuter, eds.), pp. 260 -276, Cambridge, U. K.: Cambridge University Press, 1983.

    Google Scholar 

  28. O. Hernández-Lerma, J. C. Hennet, and J. B. Lasserre, “Average cost Markov decision processes: Optimality conditions,” J. Math. Anal. Appl., vol. 158, pp. 396 -406, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  29. O. Hernández-Lerma, R. Montes-de-Oca, and R. Cavazos-Cadena, “Recurrence conditions for Markov decision processes with Borel state space,” Ann. Oper. Res., vol. 28, pp. 29 -46, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  30. E. Nummelin, General Irreducible Markov Chains and Non-Negative Operators. London: Cambridge Univ. Press, 1984.

    Book  MATH  Google Scholar 

  31. J. Neveu, Mathematical Foundations of the Calculus of Probability. San Francisco: Holden-Day, 1965.

    MATH  Google Scholar 

  32. M. Kurano, “Markov decision processes with a Borel measurable cost function -the average case,” Math. Oper. Res., vol. 11, pp. 309 -320, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  33. K. Yamada, “Duality theorem in Markovian decision problems,” J. Math. Anal. Appl., vol. 50, pp. 579 -595, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  34. S. Yakovitz, “Dynamic programming applications in water resources,” Water Resources Res., vol. 18, pp. 673 -696, 1982.

    Article  Google Scholar 

  35. C. J. Himmelberg, “Measurable relations,” Fund. Math, vol. 87, pp. 53 -72, 1975.

    MathSciNet  MATH  Google Scholar 

  36. S. M. Ross, “Arbitrary state Markovian decision processes,” Ann. Math. Statist., vol. 39, pp. 2118 -2122, 1968.

    Article  Google Scholar 

  37. T. Parthasarathy, “Existence of equilibrium stationary strategies in discounted stochastic games,” Sankhya Series A, vol. 44, pp. 114–127, 1982.

    MATH  Google Scholar 

  38. T. Parthasarathy and S. Sinha, “Existence of stationary equilibrium strategies in non-zero-sum discounted stochastic games with uncountable state space and state independent transitions,” Internat. J. Game Theory, vol. 18, pp. 189 -194, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  39. A. S. Nowak, “Zero-sum average payoff stochastic games with general state space,” Games and Economic Behavior, (to appear) 1992.

    Google Scholar 

  40. J. Georgin, “Controle de chaines de Markov sur des espaces arbitraires,” Ann. Inst. H. Poincare, vol. 14, pp. 255 -277, 1978.

    MathSciNet  MATH  Google Scholar 

  41. T. Ueno, “Some limit theorems for temporally discrete Markov processes,” J. Fac. Science Univ. Tokyo, vol. 7, pp. 449 -462, 1957.

    MathSciNet  MATH  Google Scholar 

  42. A. Hordijk, Dynamic Programming and Markov Potential Theory. Amsterdam: Math. Centrum, 1977.

    Google Scholar 

  43. J. L. Doob, Stochastic Processes. New York: Wiley, 1953.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this paper

Cite this paper

Nowak, A.S. (1994). Stationary Equilibria for Nonzero-Sum Average Payoff Ergodic Stochastic Games with General State Space. In: Başar, T., Haurie, A. (eds) Advances in Dynamic Games and Applications. Annals of the International Society of Dynamic Games, vol 1. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0245-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0245-5_13

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6679-2

  • Online ISBN: 978-1-4612-0245-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics