Hidden Hormones in Alcoholic Beverages

  • Judith S. Gavaler
  • Elaine R. Rosenblum
  • Stephen R. Deal
Part of the Drug and Alcohol Abuse Reviews book series (DAAR, volume 6)


Visualize the reproductive endocrinopathies and the subdysfunctional alterations of reproductive hormone homeostasis associated with abuse and use of alcoholic beverages. Now, mentally disassociate these endocrine effects from an alcohol etiology, and try to imagine an entirely different causal agent. Picture a quintessential alcoholic compensated-cirrhotic male with all extremes of endocrinopathy. He is both hypogonadal and feminized. He has gynecomastia and spider angiomata; he has reduced beard growth and a female escutcheon; his testes are atrophied, and he cannot achieve an erection; his levels of sex-hormone binding globulin are elevated, but his steroid estrogen levels are only minimally increased; his testosterone levels are below the lower limit of normal, but his gonadotropin levels are only mildly increased, rather than being substantially elevated in response to the low testosterone levels. Now reorient: Imagine this man to have a different face; cross out the word “alcohol” every place it appears in the history on the chart; pen a tentative diagnosis of “findings consistent with prolonged and sustained exposure to estrogen.”


Alcoholic Beverage MeOH Extract Subterranean Clover Uterus Weight Oestrogenic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Levin, J. F. Burns, and V. K. Collins (1951) Estrogenic, androgenic and gonadotrophic activity in wheat germ oil.Endocrinology 49,289–301.PubMedCrossRefGoogle Scholar
  2. 2.
    M. X. Zarrow, E. A. Lazo-Wasem, and R. L. Shoger (1953) Estrogenic activity in a commercial animal ration.Science 118,650,651.Google Scholar
  3. 3.
    J. D. Biggers and D. H. Curnow (1954) Oestrogenic activity on subterranean clover. 1. The oestrogenic activity of genistein.J. Biochem. 58,278–282.Google Scholar
  4. 4.
    D.H. Cumow (1954) Oestrogenic activity of subterranean clover. 2. Isolation of genistein from subterranean clover and methods of quantitative estimation.J. Biochem. 58,283–287.Google Scholar
  5. 5.
    R. B. Bradbury and D. E. White (1954) Estrogens and related substances in plants.Vitam. Horm. 2,207–233.CrossRefGoogle Scholar
  6. 6.
    E. M. Bickoff, A. N. Booth, R. I. Lyman, A. L. Livingston, C. R. Thompson, and F. De, eds. (1957) Coumestrol, a new estrogen isolated from forage crops.Science 126, 969,970.Google Scholar
  7. 7.
    A. N. Booth, E. M. Bickoff, and G. O. Kohler (1960) Estrogen-like activity in vegetable oils and mill by-products.Science 131,1807,1808.Google Scholar
  8. 8.
    J. Guggolz, A. L. Livingston, and E. M. Bickoff (1961) Detection of daidzein, formononetin, genistein and biochanin A in forages.J. Agric. Food Chem. 9,330–332.CrossRefGoogle Scholar
  9. 9.
    E.M. Bickoff, A. L. Livingston, A. P. Hendrickson, and A. N. Booth (1962) Relative potencies of several estrogen-like compounds found in forage crops.J. Agric. Food Chem. 10,410–412.CrossRefGoogle Scholar
  10. 10.
    G. S. Pope and H. G. Wright (1964) Oestrogenic isoflavones in red clover and subterranean clover.Chem. Industry 8,1019,1020.Google Scholar
  11. 11.
    E. Heftmann (1967) Steroid hormones in plants.Am. Perfum. Cosmet. 82,47–49.Google Scholar
  12. 12.
    E. M. Bickoff (1968) Flavonoid estrogens in plants.Am. Perfum. Cosmet. 83,59–63.Google Scholar
  13. 13.
    N. R. Farnsworth, A. S. Bingel, G. A. Cordell, F. A. Crane, and H. H. S. Fong (1975) Potential value of plants as sources of anti-fertility agents. II.J. Pharm. Sci. 64,717–754PubMedCrossRefGoogle Scholar
  14. 14.
    N. R. Farnsworth, A. S. Bingel, G. A. Cordell, F. A. Crane, and H. H. S. Fong (1975) Potential value of plants as sources of new anti-fertility agents. I.J. Pharm. Sci. 64,535–566.PubMedCrossRefGoogle Scholar
  15. 15.
    D. A. Shutt (1976) The effects of plant estrogens on animal reproduction.Endeavour 125,110–113.CrossRefGoogle Scholar
  16. 16.
    S. A. Leopold, M. Erwin, J. Oh, and B. Browning (1976) Phytoestrogens: adverse effects on reproduction in California quail.Science 191,98–100.PubMedCrossRefGoogle Scholar
  17. 17.
    M. H. Briggs and G. A. Christie (1977) Antifertility substances in plantsin Advances in Steroid Biochemistry and Pharmacy. M. H. Briggs and G. A. Christie, eds. Academic, New York, pp. xi–xx.Google Scholar
  18. 18.
    F. A. El Samannoudy, A. M. Shareha, S. A. Ghannudi, G. A. Gillaly, and S. A. El Mougy (1980) Adverse effects of phytoestrogens. 7. Effects of 13-sitosterol on follicular development, ovarian structure and uterus in the immature female sheep.Cell Molec. Biol. 26,255–266.Google Scholar
  19. 19.
    A. Zenisek and I. J. Bednar (1960) Contribution to the identification of the estrogen activity of hops.Am. Petfum. Cosmet.75, 61–64.Google Scholar
  20. 20.
    P. R. Bhandari (1964) Identification of flavonoids in hops(humulus lupulus linne)by thin-layer chromatography.Chromatography 16,130–135.CrossRefGoogle Scholar
  21. 21.
    C. Fenselau and P. Talalay (1973) Is oestrogenic activity present in hops?Cosmet. Toxicol. 11,597–603.CrossRefGoogle Scholar
  22. 22.
    A. Nilsson, J. L. Hill, and H. L. Davies (1967) An in vitro study of formononetin and biochanin A metabolism in rumen fluid of sheep.Biochem. Biophys. Acta 148,92–98.PubMedCrossRefGoogle Scholar
  23. 23.
    D. A. Shutt and A. W. H. Braden (1968) The significance of equol in relation to the oestrogenic responses in sheep ingesting clover with a high formononetin content. Aust. J. Agric. Res. 19545–553.CrossRefGoogle Scholar
  24. 24.
    D. R. Lindsay and R. W. Kelly (1970) The metabolism of phyto-estrogens in sheep.Aust. Vet. J. 46,219–222.PubMedCrossRefGoogle Scholar
  25. 25.
    L. A. Griffiths and G. E. Smith (1972) Metabolism of apigenin and related compounds in the rat.J. Biochem. (Tokyo) 128,901–911.Google Scholar
  26. 26.
    H. H. S. Chang, A. B. Robinson, and R. H. Common (1975) Excretion of radioactive daidzein and equol as monosulfates and disulfates in the urine of laying hens.Can. J. Biochem. 53,223–230.PubMedCrossRefGoogle Scholar
  27. 27.
    M. Axelson, D. N. Kirk, R. D. Farrant, G. Codey, A. M. Lawson, and K. D. R. Setchell (1982) The identification of the weak oestrogen equol [7-hydroxy-3(4’-hydroxyphenyl)chromanl in human urine.Biochem. J. 201,353–357.PubMedGoogle Scholar
  28. 28.
    K. D. R. Setchell, S. P. Borriello, P. Hulme, D. N. Krik, and M. Axelson (1984) Non-steroidal oestrogens of dietary origin: possible roles in hormone dependent disease.Am. J. Clin. Nutr. 40,569–578.PubMedGoogle Scholar
  29. 29.
    C. Bannwart, T. Fotsis, R. Heikkinen, and H. Aldercreutz (1984) Identification of the isoflavonic phytoestrogen daidzein in human urine.Clin. Chim. Acta 136,165–172.PubMedCrossRefGoogle Scholar
  30. 30.
    M. Axelson, J. Sjovall, B. E. Gustafsson, and K. D. R. Setchell (1984) Soya¡ªa dietary source of the non-steroidal oestrogen equol in humans and animals.J. Endocrinol. 102,49–56.PubMedCrossRefGoogle Scholar
  31. 31.
    K. D. R. Setchell and H. Adlercreutz (1988) Mammalian lignans and phytooestrogens recent studies on their formation, metabolism and biological role in health and disease, inRole of the Gut Flora in Toxicity and Cancer.Academic, New York, pp. 315–345.Google Scholar
  32. 32.
    H. Adlercreutz (1990) Western diet and Western diseases: some hormonal and biochemical mechanisms and associations.Scand. J. Clin. Lab. Invest.50(Suppl. 201),3–23.CrossRefGoogle Scholar
  33. 33.
    H. Adlercreutz, H. Honjo, A. Higashi, T. Fotsis, E. Hamalainen, T. Hasegawa, and H. Okada (1991) Urinary excretion of lignans and isoflavonoid phytoestrogens in Japanese men and women consuming a traditional Japanese diet.Am. J. Clin. Nutr. 54,1093–1100.PubMedGoogle Scholar
  34. 34.
    J. H. Kahn (1969) Compounds identified in whiskey, wine and beer: a tabulation.J. Assoc. Anal. Chem. 52,1166–1178.Google Scholar
  35. 35.
    J. S. Gavaler, A. F. Imhoff, C. R. Pohl, E. R. Rosenblum, and D. H. Van Thiel(1987)Alcoholic beverages: a source of estrogenic substances?Alcohol and Alcoholism Suppl. 1,545–549.Google Scholar
  36. 36.
    J. S. Gavaler, E. R. Rosenblum, D. H. Van Thiel, P. K. Eagon, C. R. Pohl, and I. M. Campbell (1987) Biologically active phytoestrogens are present in bourbon.Alcohol Clin. Exp. Res.11,399–406.CrossRefGoogle Scholar
  37. 37.
    M. Shemesh, H. R. Linder, and N. Ayalon (1972) Affinity of rabbit uterine oestradiol receptor for phyto-oestrogens and its use in a competitive protein-binding radioassay for plasma coumestrol.J. Reprod. Fertil. 29,1–9.PubMedCrossRefGoogle Scholar
  38. 38.
    D. A. Shutt and R. I. Cox (1972) Steroid and phyto-oestrogen binding to sheep uterine receptors in vitro.J. Endocrinol. 52,299–310.PubMedCrossRefGoogle Scholar
  39. 39.
    P. M. Martin, K. B. Horwitz, D. S. Ryan, and W. McGuire (1978) Phyto-estrogen interaction with estrogen receptors in human breast cancer cell.Endocrinology 103,1860–1867.PubMedCrossRefGoogle Scholar
  40. 40.
    B. Tang and N. R. Adams (1980) Effect of equol on oestrogen receptors and on synthesis of DNA and protein in the immature rat uterus.J. Endocrinol. 85,291–297.PubMedCrossRefGoogle Scholar
  41. 41.
    K. Verdeal, R. R. Brown, T. Richardson, and D. S. Ryan (1980) Affinity of phytoestrogens for estradiol-binding proteins and effect of coumestrol on growth of 7,12-dimethylbenz[a]anthracene induced rat mammary tumors.J. Natl. Can. Inst. 64,285–290.Google Scholar
  42. 42.
    E. R. Rosenblum, D. H. Van Thiel, I. M. Campbell, P. K. Eagon, and J. S. Gavaler (1987) Separation and identification of phytoestrogenic compounds isolated from bourbon.Alcohol and Alcoholism Suppl. 1,551–555.Google Scholar
  43. 43.
    E. R. Rosenblum, D. H. Van Thiel, I. M. Campbell, and J. S. Gavaler (1991) Quantitation of 13-sitosterol in bourbon.Alcohol Clin. Exp. Res. 15,205,206.Google Scholar
  44. 44.
    E. R. Rosenblum, D. H. Van Thiel, I. M. Campbell, and J. S. Gavaler (1988) Isolation of phytoestrogens from beer.Alcohol Clin. Exp. Res. 12,316.Google Scholar
  45. 45.
    E. R. Rosenblum, R. E. Stauber, D. H. Van Thiel, I. M. Campbell, and J. S. Gavaler (1993) Assessment of the estrogenic activity of phytoestrogens isolated from bourbon and beer.Alcohol. Clin. Exp. Res. 17,1207–1209.PubMedCrossRefGoogle Scholar
  46. 46.
    D. H. Van Thiel, A. Galvao-Teles, E. Monteiro, E. R. Rosenblum, and J. S. Gavaler (1991) The phytoestrogens present in de-ethanolized bourbon are biologically active: a preliminary study in a postmenopausal woman.Alcohol Clin. Exp. Res. 15,822,823.Google Scholar
  47. 47.
    J. S. Gavaler, A. Galvao-Teles, E. Monteiro, D. H. Van Thiel, and E. R. Rosenblum (1991) Clinical responses to the administration of bourbon phytoestrogens to normal postmenopausal women.Hepatology 14,193.Google Scholar
  48. 48.
    J. S. Gavaler (1987) The determinants of estrogen levels in postmenopausal women. DissertationUniversity Microfilms /nt.Ann Arbor, MI.Google Scholar
  49. 49.
    J. S. Gavaler, K. Love, D. H. Van Thiel, S. Farholt, C. Gluud, E. Monteiro, A. Galvao-Teles, T. Conton-Ortega, and V. Cuervas-Mons (1991) An international study of the relationship between alcoholic beverage consumption and postmenopausal estradiol levels.Alcohol Alcoholism Suppl. 1,327–330.Google Scholar
  50. 50.
    M. T. R. Subbiah (1971) Significance of dietary plant sterols in man and experimental animals.Mayo Clin. Proc. 46,549–559.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Judith S. Gavaler
  • Elaine R. Rosenblum
  • Stephen R. Deal

There are no affiliations available

Personalised recommendations