Insulin Gene Structure and Regulation

  • Michael S. German

Abstract

In the 70 years since Banting and Best extracted insulin from a dog’s pancreas (1), it has become the best studied of the peptide hormones. Insulin was the first protein for which the complete amino acid sequence was determined, and it was the first peptide hormone molecularly cloned. Insulin has been found throughout the animal world. It functions as a hormone in animals as divergent as sponges, flies, and humans, with very little sequence change over the one-and-a-half billion years this divergence represents.

Keywords

Glutamine Sponge Leucine Stein Hyperglycemia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banting FG, Best CH: The internal secretion of the pancreas. J Lab Clin Med 7:251–266, 1922.Google Scholar
  2. 2.
    Ullrich A, Shine J, Chirgwin J, Pictet R, Tischer E, Rutter WJ, et al.: Rat insulin genes: Construction of plasmids containing the coding sequences. Science 196:1313–1319, 1977.CrossRefGoogle Scholar
  3. 3.
    Bell GI, Swain WF, Pictet RL, Cordell B, Goodman HM, Rutter WJ: Nucleotide sequence of a cDNA clone encoding human preproinsulin. Nature 282:525–527, 1979.CrossRefGoogle Scholar
  4. 4.
    Bell GI, Pictet RL, Rutter WJ, Cordell B, Tischer E, Goodman HM: Sequence of the human insulin gene. Nature 284:26–32, 1980.CrossRefGoogle Scholar
  5. 5.
    Soares MB, Schon E, Henderson A, Karathanasis SK, Cate R, Zeitlin S, et al.: RNA-mediated gene duplication: the rat preproinsulin I gene is a functional retroposon. Mol Cell Biol 5:2090–2103, 1985.Google Scholar
  6. 6.
    Perler F, Efstratiadis A, Lomedico P, Gilbert W, Kolodner R, Dodgson J: The evolution of genes: the chicken preproinsulin gene. Cell 20:555–566, 1980.CrossRefGoogle Scholar
  7. 7.
    Koval AP, Petrenko AI, Kavsan VM: Sequence of the salmon (Oncorhynchys keta) preproinsulin gene. Nucleic Acids Res 17:1758, 1989.CrossRefGoogle Scholar
  8. 8.
    Bell GI, Selby M, Rutter WJ: The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences. Nature 295:31–35, 1982.CrossRefGoogle Scholar
  9. 9.
    Seino S, Bell GI, Li WH: Sequences of primate insulin genes support the hypothesis of a slower rate of molecular evolution in humans and apes than in monkeys. Mol Biol Evol 9:193–203, 1992.Google Scholar
  10. 10.
    Seino S, Steine DF, Bell GI: Squence of a new world primate insulin having low biological potency and immunoreactivity. Proc Natl Acad Sci USA 84:7423–7427, 1987.CrossRefGoogle Scholar
  11. 11.
    Hammond-Kosack MCU, Dobrinski B, Lurz R, Docherty K, Kilpatrick M: The human insulin gene linked polymorphic region exhibits an altered DNA structure. Nucleic Acids Res 20:231–236, 1992.CrossRefGoogle Scholar
  12. 12.
    Laub O, L Rall, Bell GI, Rutter WJ: Expression of the human insulin gene in an alternate mammalian cell and in cell extracts. J Biol Chem 258:6037–6042, 1983.Google Scholar
  13. 13.
    Laub O, Rutter WJ: Expression of the human insulin gene and cDNA in a heterologous mammalian system. J Biol Chem 258:6043–6050, 1983.Google Scholar
  14. 14.
    Moore HPH, Walker MD, Lee F, Kelly RB: Expressing a human proinsulin cDNA in a mouse ACTH-secreting cell. Intracellular storage, proteolytic processing and secretion of stimulation. Cell 35:531–538, 1983.CrossRefGoogle Scholar
  15. 15.
    Gittes G, Rutter WJ: Onset of cell-specific gene expression in the developing mouse pancreas. Proc Natl Acad Sci USA 89:1128–1132, 1992.CrossRefGoogle Scholar
  16. 16.
    Teitelman G, Lee JK, Alpert S: Cell lineage analysis of pancreatic exocrine and endocrine cells. Cell Tissue Res 250:435–439, 1987.CrossRefGoogle Scholar
  17. 17.
    Alpert S, Hanahan D, Teitelman G: Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons. Cell 53:295–308, 1988.CrossRefGoogle Scholar
  18. 18.
    Walker MD, Edlund T, Boulet AM, Rutter WJ: Cell-specific expression controlled by the 5′ flanking regions of the insulin and chymotrypsin genes. Nature 306:557–581, 1983.CrossRefGoogle Scholar
  19. 19.
    Hanahan D: Heritable formation of pancreatic β-cell tumors in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315:115–122, 1985.CrossRefGoogle Scholar
  20. 20.
    Edlund T, Walker MD, Barr PJ, Rutter WJ: Cell-specific expression of the rat insulin gene: evidence for the role of two distinct 5′ flanking sequences. Science 230:912–916, 1985.CrossRefGoogle Scholar
  21. 21.
    Boam D, Clark A, Docherty K: Positive and negative regulation of the insulin gene by multiple tarns-acting factors. J Biol Chem 265:8285–8296, 1990.Google Scholar
  22. 22.
    Crowe DT, Tsai M-J: Mutagenesis of the rat insulin II 5′-flanking region defines sequences important for expression in HIT cells. Mol Cell Biol 9:1784–1789, 1989.Google Scholar
  23. 23.
    Karlsson O, Edlund T, Moss JB, Rutter WJ, Walker MD: A mutational analysis of the insulin gene transcription control region: expression in β-cells is dependent on two related sequences within the enhancer. Proc Natl Acad Sci USA 84:8819–8823, 1987.CrossRefGoogle Scholar
  24. 24.
    Whelan J, Poon D, Weil PA, Stein R: Pancreatic β-cell-type-specific expression of the rat insulin II gene is controled by positive and negative cellular transcription elements. Mol Cell Biol 9:3253–3259, 1989.Google Scholar
  25. 25.
    Aronheim A, Ohlsson H, Park CW, Edlund T, Walker MD: Distribution and characterization of helix-loop-helix enhancer-binding proteins from pancreatic β-cells and lymphocytes. Nucleic Acids Res 19:3893–3899, 1991.CrossRefGoogle Scholar
  26. 26.
    Moss LG, Moss JB, Rutter WJ: Systematic binding analysis of the insulin gene transcription control region: insulin and immunoglobulin enhancers utilize similar transactivators. Mol Cell Biol 8:2620–2627, 1988.Google Scholar
  27. 27.
    Ohlsson H, Karlson O, Edlund T: A β-cell-specific protein binds to the two major regulatory sequences of the insulin enhancer. Proc Natl Acad Sci 85:4228–4231, 1988.CrossRefGoogle Scholar
  28. 28.
    Sheih S, Tsai M: Cell-specific and ubiquitous factors are responsible for the enhancer activity of the rat insulin II gene. J Biol Chem 266:16, 708-16, 704, 1991.Google Scholar
  29. 29.
    Whelan J, Cordle SR, Henderson E, Weil PA, Stein R: Identification of a pancreatic β-cell insulin gene transcription factor that binds to and appears to activate cell-type-specific expression: its possible relationship to other cellular factors that bind to a common insulin gene sequence. Mol Cell Biol 10:1564–1572, 1990.Google Scholar
  30. 30.
    German MS, Blanar MA, Nelson C, Moss LG, Rutter WJ: Two related helix-loop-helix proteins participate in separate cell-specific complexes that bind to the insulin enhancer. Mol Endocinol 5:292–299, 1991.CrossRefGoogle Scholar
  31. 31.
    Nelson C, Shen L-P, Meister A, Fodor E, Rutter WJ: Pan: a transcriptional regulator that binds chymotrypsin, insulin, and AP-4 enhancer motifs. Genes Dev 4:1035–1043, 1990.CrossRefGoogle Scholar
  32. 32.
    Sun XH, Baltimore D: An inhibitory domain of E12 transcription factor prevents DNA binding in E12 homodimers but not in El2 heterodimers. Cell 64:459–470, 1991.CrossRefGoogle Scholar
  33. 33.
    Murre C, McCaw PS, Baltimore D: A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56:777–783, 1989.CrossRefGoogle Scholar
  34. 34.
    Walker, MD, Park CW, Rosen A, Aronheim A: A cDNA from a mouse pancreatic β-cell encoding a putative transcription factor of the insulin gene. Nucleic Acids Res 18:1159–1166, 1990.CrossRefGoogle Scholar
  35. 35.
    Cordle SR, Henderson E, Masuoka H, Weil PA, Stein R: Pancreatic β-cell-type-specific transcription of the insulin gene is mediated by basic helix-loop-helix DNA-binding proteins. Mol Cell Biol 11:1734–1738, 1991.Google Scholar
  36. 36.
    Park CW, Walker MD: Subunit structure of cell-specific E box-binding proteins analyzed by quantitation of electrophoretic mobility shift. J Biol Chem 267:15, 642-15, 649, 1992.Google Scholar
  37. 37.
    Boam DSW, Docherty K: A tissue-specific nuclear factor binds to multiple sites in the human insulin-gene enhancer. Biochem J 264:233–239, 1989.Google Scholar
  38. 38.
    German MS, Moss LG, Wang J, Rutter WJ: The insulin and islet amyloid polypeptide genes contain similar cell-specific promoter elements that bind identical β-cell nuclear complexes. Mol Cell Biol 12:1777–1788, 1992.Google Scholar
  39. 39.
    Shelton KD, Franklin AJ, Khoor A, Beechem J, Magnuson MA: Multiple elements in the upstream glucokinase promoter contribute to transcription in insulinoma cells. Mol Cell Biol 12:4578–4589, 1992.Google Scholar
  40. 40.
    Scott V, Clark AR, Hutton JC, Docherty K: Two proteins act as the IUF1 insulin gene enhancer binding factor. FEBS Letts 290:27–30, 1991.CrossRefGoogle Scholar
  41. 41.
    Karlsson O, Thor S, Norberg T, Ohlsson H, Edlund T: Insulin gene enhancer binding protein isl-1 is a member of a novel class of proteins containing both a homeo-and a cys-his domain. Nature 344:879–882, 1990.CrossRefGoogle Scholar
  42. 42.
    Dong J, Asa SL, Drucker DJ: Islet cell and extrapancreatic expression of the LIM domain homeobox gene isl-1. Mol Endocrinol 5:1633–1641, 1991.CrossRefGoogle Scholar
  43. 43.
    Thor S, Ericson J, Brannstrom T, Edlund T: The homeodomain LIM protein isl-I is expressed in subsets of neurons and endocrine cells in the adult rat. Neuron 7:1–9, 1991.CrossRefGoogle Scholar
  44. 44.
    German MS, Wang J, Chadwick RB, Rutter WJ: Synergistic activation of the insulin gene by a LIM-homeodomain protein and a basic helix-loop-helix protein: building a functional insulin minienhancer complex. Genes Dev 6:2165–2176, 1992.CrossRefGoogle Scholar
  45. 45.
    Li PM, Reichert J, Freyd G, Horvitz HR, Walsh CT: The LIM region of a presumptive Caenorhabditis elegans transcription factor is an iron-sulfur-and zinc-containing metallodomain. Proc Natl Acad Sci USA 88:9210–9213, 1991.CrossRefGoogle Scholar
  46. 46.
    Emens LA, Landers DW, Moss LG: Hepatocyte nuclear factor 1α is expressed in a hamster insulinoma line and transactivates the rat insulin I gene. Proc Natl Acad Sci USA 89:7300–7304, 1992.CrossRefGoogle Scholar
  47. 47.
    German MS, Wang J: The insulin gene contains multiple transcriptional elements that respond to glucose. Mol Cell Biol, in press.Google Scholar
  48. 48.
    Kennedy GC, Rutter WJ: Pur-1, a zinc-finger protein that binds to purine-rich sequences, transactivates an insulin promoter in heterologous cells. Proc Natl Acad Sci USA 89:11, 498-11, 502, 1992.CrossRefGoogle Scholar
  49. 49.
    Nir U, Walker MD, Rutter WJ: Regulation of rat insulin 1 gene expression: evidence for negative regulation in nonpancreatic cells. Proc Natl Acad Sci USA 83:3180–3184, 1986.CrossRefGoogle Scholar
  50. 50.
    Takeda J, Ishii S, Seino Y, Imamoto F, Imura H: Negative regulation of human insulin gene expression by the 5′-flanking region in non-pancreatic cells. FEBS Letts 247:41–45, 1989.CrossRefGoogle Scholar
  51. 51.
    Laimins L, Holmgren-Konig M, Khoury G: Transcriptional “silencer” element in rat repetitive sequences associated with the rat insulin 1 gene locus. Proc Natl Acad Sci USA 83:3151–3155, 1986.CrossRefGoogle Scholar
  52. 52.
    Docherty K: The regulation of insulin gene expression. Diabetic Med 9:792–798, 1992.CrossRefGoogle Scholar
  53. 53.
    Ohlsson H, Edlund T: Sequence-specific interactions of nuclear factors with the insulin gene enhancer. Cell 45:35–44, 1986.CrossRefGoogle Scholar
  54. 54.
    Hwung Y, Gu Y, Tsai M: Cooperativity of sequence elements mediates tissue specificity of the rat insulin II gene. Mol Cell Biol 10:1784–1788, 1990.Google Scholar
  55. 55.
    Giddings SJ, Chirgwin J, Permutt MA: Effects of glucose on proinsulin mRNA in rats in vivo. Diabetes 31:624–629, 1982.CrossRefGoogle Scholar
  56. 56.
    Brunstedt J, Chan SJ: Direct effect of glucose on the preproinsulin mRNA level in isolated pancreatic islets. Biochem Biophys Res Commun 106:1383–1389, 1982.CrossRefGoogle Scholar
  57. 57.
    Welsh M, Scherberg N, Gilmore R, Steiner DF: Translational control of insulin biosynthesis. Biochem J 235:459–467, 1986.Google Scholar
  58. 58.
    Nielsen DA, Welsh M, Casadaban MJ, Steiner DF: Control of insulin gene expression in pancreatic β-cells and in an insulin-producing cell line, RIN-5F cells. J Biol Chem 260:13, 585-13, 589, 1985.Google Scholar
  59. 59.
    Welsh M, Nielsen DA, MacKrell AJ, Steiner DF: Control of insulin gene expression in pancreatic β-cells and in an insulin-producing cell line, RIN-5F cells. J Biol Chem 260:13, 590–13, 594, 1985.Google Scholar
  60. 60.
    Orland MJ, Chyn R, Permutt MA: Modulation of proinsulin mRNA after partial pancreatectomy in rats. Relationships to glucose homeostasis. J Clin Invest 75: 2047–2055, 1985.CrossRefGoogle Scholar
  61. 61.
    German MS, Moss LG, Rutter WJ: Regulation of insulin gene expression by glucose and calcium in transfected primary islet cultures. J Biol Chem 265:22, 063-22, 066, 1990.Google Scholar
  62. 62.
    German M: Glucose sensing in pancreatic islet beta cells: the key role of glucokinase and the glycolytic intermediates. Proc Natl Acad Sci USA 90:1781–1785, 1993.CrossRefGoogle Scholar
  63. 63.
    Philippe J, Missotten M: Functional characterization of a c AMP-responsive element of the rat insulin I gene. J Biol Chem 265:1465–1469, 1990.Google Scholar
  64. 64.
    Vinik A, Bell G: Mutant insulin syndromes. Horm Metabol Res 20:1–10, 1988.CrossRefGoogle Scholar
  65. 65.
    Bell GI, Horita S, Karam JH: A polymorphic locus near the human insulin gene is associated with insulin-dependent diabetes mellitus. Diabetes 33:176–183, 1984.CrossRefGoogle Scholar
  66. 66.
    Hitman GA, Jowett NI, Williams LG, Humphries S, Winter RM, Galton DJ: Polymorphisms in the 5′-flanking region of the insulin gene and non-insulin-dependent diabetes. Clin Sci 66:383–388, 1984.Google Scholar
  67. 67.
    Rotwein PS, Chirgwin J, Province M, Knowler WC, Pettitt DJ, Cordell B, et al.: Polymorphisms in the 5′ flanking reion of the human insulin gene: a genetic marker for non-insulin dependent diabetes mellitus. N Eng J Med 308:65–67, 1983.CrossRefGoogle Scholar
  68. 68.
    Takeda J, Seino Y, Fukomoto H, Koh G, Otsuka A, Ikeda M, et al.: The polymorphism linked to the human insulin gene: its lack of association with either IDDM or NIDDM in Japanese. Acta Endocrinol 113:268–271, 1986.Google Scholar
  69. 69.
    Julier C, Hyer RN, Davies J, Merlin F, Soularue P, Briant L, et al.: Insulin-IGF2 region on chromosome 11p encodes a gene implicated in HLA-DR4-dependent diabetes susceptibility. Nature 354:155–159, 1991.CrossRefGoogle Scholar
  70. 70.
    van der Auwera BJ, Heimberg H, Schrevens AF, Van Waeyenberge C, Flament J, Schuit FC: 5′ insulin gene polymorphism confers risk to IDDM independently of HLA class II susceptibility. Diabetes 42:851–854, 1993.CrossRefGoogle Scholar
  71. 71.
    Bain SC, Prins JB, Hearne CM, Rodrigues NR, Rowe BR, Pritchard LE, et al.: Insulin gene region-encoded susceptibility to type I diabetes is not restricted to HLA-DR4-positive individuals. Nature Genet 2:212–215, 1992.CrossRefGoogle Scholar
  72. 72.
    DeChiara TM, Robertson EJ, Efstratiadis A: Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64:849–859, 1991.CrossRefGoogle Scholar
  73. 73.
    Henry I, Bonaiti-Pellie C, Chehensse V, Beldjord C, Schwartz C, Utermann G: Uniparental paternal disomy in a genetic cancer-predisposing syndrome. Nature 351:665–667, 1991.CrossRefGoogle Scholar
  74. 74.
    Olansky L, Welling C, Giddings S, Adler S, Bourey R, Dowse G, et al.: A variant insulin promoter in non-insulin-dependent diabetes mellitus. J Clin Invest 89:1596–1602, 1992.CrossRefGoogle Scholar
  75. 75.
    Kwok SM, Chan SJ, Steiner DF: Cloning and nucleotide sequence analysis of the dog insulin gene: Coded amino acid sequence of canine preproinsulin predicts an additional C-peptide fragment. J Biol Chem 258:2357–2363, 1983.Google Scholar
  76. 76.
    Steiner DF, Chan SJ, Welsh JM, Kwok SCM: Structure and evolution of the insulin gene. Ann Rev Genet 19:463–484, 1985.CrossRefGoogle Scholar
  77. 77.
    Wentworth BM, Schaefer IM, Villa-Komaroff L, Chirgwin JM: Characterization of the two nonallelic genes encoding mouse preproinsulin. J Mol Evol 23:305–312, 1986.CrossRefGoogle Scholar
  78. 78.
    Cordell B, Bell G, Tischer E, DeNoto FM, Ullrich A, Pictet R, et al.: Isolation and characterization of a cloned rat insulin gene. Cell 18:533–543, 1979.CrossRefGoogle Scholar
  79. 79.
    Lomedico P, Rosenthal N, Efstratiadis A, Gilbert W, Kolodner R, Tizard R: The structure and evolution of the two nonallelic rat preproinsulin genes. Cell 18:545–558, 1979.CrossRefGoogle Scholar
  80. 80.
    Chan SJ, Episkopou V, Zeitlin S, Karathanasis SK, MacKrell A, Steiner DF, et al.: Guinea pig preproinsulin gene: an evolutionary compromise? Proc Natl Acad Sci USA 81:5046–5050, 1984.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Michael S. German

There are no affiliations available

Personalised recommendations