Skip to main content

Vitamin D, Gene Expression, and Cancer

  • Chapter
Nutrients in Cancer Prevention and Treatment

Part of the book series: Experimental Biology and Medicine ((EBAM,volume 27))

Abstract

Classically, vitamin D was discovered because in its absence the disease rickets, osteomalacia, and hypocalcemic tetany resulted (1, 2). Clearly, vitamin D functions in the regulation of plasma calcium and plasma phosphorus, which in turn results in normal mineralization of the skeleton and the normal functioning of the neuromuscular junction. Vitamin D carries out these functions following its metabolism, as described below, to its active or hormonal form, i.e. 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). This hormone directly stimulates intestinal calcium transport and independently intestinal phosphate transport by mechanisms not yet fully understood (1, 2). In addition, 1,25-(OH)2D3 acts on the osteoblasts together with parathyroid hormone (PTH) to facilitate the mobilization of calcium from bone into the plasma compartment when required. More recently it has been demonstrated that 1,25-(OH)2D3 facilitates the reabsorption of calcium in the distal renal tubule in a mechanism also dependent upon the presence of the PTH (1-3). These actions result in an elevation of plasma calcium and phosphorus, resulting in normal mineralization of the skeleton and neuromuscular function (Figure 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DeLuca, H. F. The transformation of a vitamin into a hormone: The vitamin D story. The Harvey Lectures, Series 75, pp. 333–379. New York:Academic Press, 1981.

    Google Scholar 

  2. DeLuca, H. F. The vitamin D-calcium axis--1983. In: R.P. Rubin, G. B. Weiss, and J.W. Putney, Jr. (eds.), Calcium in Biological System, pp. 491–511. New York: Plenum, 1985.

    Chapter  Google Scholar 

  3. Yamamoto, M., Kawanobe, Y., Takahashi, H., Shimazawa, E., Kimura, S., and Ogata, E, Vitamin D deficiency and renal calcium transport in the rat. J. Clin. Invest., 74: 507–513, 1984.

    Article  CAS  Google Scholar 

  4. DeLuca, H. F. New concepts of vitamin D functions. In: H.E. Sauberlich and K.J. Machlin (eds.), Beyond Deficiency. New Views on the Function and Health Effects of Vitamins, vol. 669, pp. 59–69. The New York Academy of Sciences, New York, 1992.

    Google Scholar 

  5. Suda, T. The role of 1a,25-dihydroxyvitamin D3 in the myeloid cell differentiation. Proc. Soc. Exp. Biol. Med., 191: 214–220, 1989.

    CAS  Google Scholar 

  6. Usui, E., Noshiro, M., and Okuda, K. Molecular cloning of cDNA for vitamin D3 25-hydroxylase from rat liver mitochondria. FEBS Lett., 262: 135–138, 1990.

    Article  CAS  Google Scholar 

  7. Reeve, L., Tanaka, Y., and DeLuca, H. F. Studies on the site of 1,25dihydroxyvitamin D3 synthesisin vivo.J. Biol. Chem., 258: 3615–3617, 1983.

    CAS  Google Scholar 

  8. Shultz, T. D., Fox, J., Heath, H. III, and Kumar, R. Do tissues other than the kidney produce 1,25-dihydroxyvitamin D3 in vivo? A reexamination. Proc. Natl. Acad. Sci. USA, 80: 1746–1750, 1983.

    Article  CAS  Google Scholar 

  9. Barbour, G. L., Coburn, J. W., Slatopolsky, E., Norman, A. W., and Horst, R. L. Hypercalcemia in an anephric patient with sarcoidosis; Evidence for extrarenal generation of 1,25-dihydroxyvitamin D. New Engl. J. Med., 305: 440–443,1981.

    CAS  Google Scholar 

  10. Adams, J. S., Gacad, M. A., Singer, F. R., and Sharma, O. P. Production of 1,25-dihydroxyvitamin D3 by pulmonary alveolar macrophages from patients with sarcoidosis. In: C.J. Johns (ed.), Tenth International Conference on Sarcoidosis and Other Granulomatous Disorders, vol. 465, pp. 587-. New York:New York Academy of Sciences, 1986.

    Google Scholar 

  11. Lohnes, D., and Jones, G. Side chain metabolism of vitamin D3 in osteosarcoma cell line UMR-106. Characterization of products. J. Biol. Chem., 262:14394–14401,1987.

    CAS  Google Scholar 

  12. DeLuca, H. F. The vitamin D story: A collaborative effort of basic science and clinical medicine. FASEB J., 2: 224–236,1988.

    CAS  Google Scholar 

  13. Stumpf, W.E., Sar, M., Reid, F.A., Tanaka, Y., and DeLuca, H. F. Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary and parathyroid. Science, 206: 1188–1190, 1979.

    Article  CAS  Google Scholar 

  14. Link, R., and DeLuca, H. F. The vitamin D receptor. In: P.M. Conn (ed.), The Receptors, vol. II, pp. 1–35. New York: Academic Press, 1985.

    Google Scholar 

  15. Barsony, J., Pike, J. W., DeLuca, H. F., and Manx, S. J. Immunocytology with microwave-fixed fibroblasts shows 1 a,25-dihydroxyvitamin D3-dependent rapid and estrogen-dependent slow reorganization of vitamin D receptors. J. Cell Biol., 111: 2385–2395,1990.

    Article  CAS  Google Scholar 

  16. Dame, M. C., Pierce, E. A., Prahl, J. M., Hayes, C. E., and DeLuca, H. F. Monoclonal antibodies to the porcine intestinal receptor for 1,25dihydroxyvitamin D3: Interaction with distinct receptor domains. Biochemistry, 25: 4523–4534, 1986.

    Article  CAS  Google Scholar 

  17. Pike, J. W., Marion, S. L., Donaldson, C. A., and Haussier, M. R. Serum and monoclonal antibodies against the chick intestinal receptor for 1,25dihydroxyvitamin D3. J. Biol. Chem., 258:1289–1296, 1983.

    CAS  Google Scholar 

  18. Burmester, J. K., Wiese, R. J., Maeda, N., and DeLuca, H. F. Structure and regulation of the rat 1,25-dihydroxyvitamin D3 receptor. Proc. Natl. Acad. Sci. USA, 85: 9499–9502,1988.

    Article  CAS  Google Scholar 

  19. Baker, A. R., McDonnell, D. P., Hughes, M., Crisp, T. M., Mangelsdorf, D. J., Haussier, M. R., Pike, J. W., Shine, J., and O’Malley, B. W. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc. Natl. Acad. Sci. USA, 85: 3294–3298,1988.

    Article  CAS  Google Scholar 

  20. Darwish, H., and DeLuca, H. F. Vitamin D-regulated gene expression. In: G.S. Stein, J.L. Stein, and J.B. Lian (eds.), Critical Reviews in Eukaryotic Gene Expression, vol. 3(2), pp. 89–116. Boca Raton, FL: CRC Press, 1993.

    Google Scholar 

  21. Li, Z., Prahl, J. M., Hellwig, W., and DeLuca, H. F. Immunoaffinity purification of active rat recombinant 1,25-dihydroxyvitamin D3 receptor. Arch. Biochem. Biophys. 310: 347–351, 1994.

    Article  Google Scholar 

  22. Wiese, R. J., Goto, H., Prahl, J. M., Marx, S. J., Thomas, M., Al-Aqeel, A., and DeLuca, H. F. Vitamin D-dependency rickets type II: Truncated vitamin D receptor in three kindreds. Mol. Cell. Endocrinol., 90: 197–201, 1993.

    CAS  Google Scholar 

  23. Malloy, P. J., Hochberg, Z., Tiosano, D., Pike, J. W., Hughes, M. R., and Feldman, D. The molecular basis of hereditary 1,25-dihydroxyvitamin D3 resistant rickets in seven related families. J. Clin. Invest., 86: 2071–2079,1990.

    Article  CAS  Google Scholar 

  24. Brooks, M. H., Bell, N. H., Love, L., Stern, P. H., Orfei, E., Queener, S. F., Hamstra, A. J., and DeLuca, H. F. Vitamin D-dependent rickets type II. Resistance of target organs to 1,25-dihydroxyvitamin D. New Engl. J. Med., 298: 996–999,1978.

    CAS  Google Scholar 

  25. Ross, T. K., Darwish, H. M., and DeLuca, H. F. Molecular biology of vitamin D action. In: G. Litwack (ed.), Vitamins and Hormones, vol. 49, pp. 281–326. New York:Academic Press, 1994.

    Google Scholar 

  26. Umesono, K., Murakami, K. K., Thompson, C. C., and Evans, R. M. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell, 65: 1255–1266, 1991.

    Article  CAS  Google Scholar 

  27. Zierold, C., Darwish, H. M., and DeLuca, H. F. Identification of a vitamin D-response element in the rat calcidiol (25-hydroxyvitamin D3) 24hydroxylase gene. Proc. Natl. Acad. Sci. USA, 91: 900–902,1994.

    Article  CAS  Google Scholar 

  28. Ohyama, Y., Zono, K., Uchida, M., Shinki, T., Kato, S., Suda, T., Yamamoto, O., Noshiro, M., and Kato, Y. Identification of a vitamin D-responsive element in the 5’-flanking region of the rat 25-hydroxyvitamin D3 24-hydroxylase gene. J. Biol. Chem., 269: 10545–10550, 1994.

    CAS  Google Scholar 

  29. Ross, T. K., Moss, V. E., Prahl, J. M., and DeLuca, H. F. A nuclear protein essential for binding of rat 1,25-dihydroxyvitamin D3 receptor to its response elements. Proc. Natl. Acad. Sci. USA, 89: 256–260,1992.

    Article  CAS  Google Scholar 

  30. Sone, T., Ozono, K., and Pike, J. W. A 55-kilodalton accessory factor facilitates vitamin D receptor DNA binding. Mol. Endocrinol., 5: 1578–1586,1991.

    CAS  Google Scholar 

  31. Kliewer, S. A., Umesono, K., Mangelsdorf, D. J., and Evans, R. M. Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signaling. Nature, 355: 446–449, 1992.

    Article  CAS  Google Scholar 

  32. Zhang, S. K., Hoffmann, B., Tran, P. B. V., Gaupner, G., and Pfahl, M. Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors. Nature, 355: 441–446, 1992.

    Article  CAS  Google Scholar 

  33. Ross, T. K., Darwish, H. M., Moss, V. E., and DeLuca, H. F. Vitamin D-influenced gene expression via a ligand-independent, receptor-DNA complex intermediate. Proc. Natl. Acad. Sci. USA, 90: 9257–9260, 1993.

    Article  CAS  Google Scholar 

  34. Brown, T. A., and DeLuca, H. F. Phosphorylation of the 1,25-dihydroxyvitamin D3 receptor: A primary event in 1,25- dihydroxyvitamin D3 action. J. Biol. Chem., 265: 10025–10029,1990.

    CAS  Google Scholar 

  35. Jurutka, P. W., Terpening, C. M., and Haussier, M. R. The 1,25dihydroxy-vitamin D3 receptor is phosphorylated in response to 1,25dihydroxyvitamin D3 and 22-oxacalcitriol in rat osteoblasts, and by casein kinase II, in vitro. Biochemistry, 32: 8184–8192,1993.

    Article  Google Scholar 

  36. Jurutka, P. W., Hsieh, J-C., MacDonald, P. N., Terpening, C. M., Haussier, C. A., Haussier, M. R., and Whitfield, G. K. Phosphorylation of serine 208 in the human vitamin D receptor. The predominant amino acid phosphorylated by casein kinase ilin vitroand identification as a significant phosphorylation site in intact cells. J. Biol. Chem., 268: 6791–6799,1993.

    Google Scholar 

  37. Hsieh, J-C., Jurutka, P. W., Galligan, M. A., Terpening, C. M., Haussier, C. A., Samuels, D. W., Himizu, Y., Shimizu, N., and Haussier, M. R. Human vitamin D receptor is selectively phosphorylated by protein kinase C on serine 51, a residue crucial to its trans-activation function. Proc. Natl. Acad. Sci. USA, 88: 9315–9319, 1991.

    Article  CAS  Google Scholar 

  38. Hsieh, J-C., Jurutka, P. W., Nakajima, S., Galligan, M. A., Haussier, C. A., Shimizu, Y., Himizu, N., Whitfield, G. K., and Haussier, M. R. Phosphorylation of the human vitamin D receptor by protein kinase C. Biochemical and functional evaluation of the serine 51 recognition site. J. Biol. Chem., 268: 15118–15126, 1993.

    CAS  Google Scholar 

  39. Brown, T. A., and DeLuca, H. F. Sites of phosphorylation and photoaffinity labeling of the 1,25-dihydroxyvitamin D3 receptor. Arch. Biochem. Biophys., 286: 466–472,1991.

    CAS  Google Scholar 

  40. Darwish, H. M., Burmester, J. K., Moss, V. E., and DeLuca, H. F. Phosphorylation is involved in transcriptional activation by the 1,25dihydroxyvitamin D3 receptor. Biochim. Biophys. Acta, 1167: 29–36, 1993.

    Article  CAS  Google Scholar 

  41. Abe, E., Miyaura, C., Sakagami, H., Takeda, M., Konno, K., Yamazaki, T., Yoshiki, S., and Suda, T. Differentiation of mouse myeloid leukemia cells induced by 1 a,25-dihydroxyvitamin D3. Proc. Natl. Acad. Sci. USA, 78, 4990–4994,1981.

    Article  CAS  Google Scholar 

  42. Tanaka, H., Abe, E., Miyaura, C., Kuribayashi, T., Konno, K., Nishii, Y., and Suda, T. 1α,25-Dihydroxycholecalciferol and a human myeloid leukaemia cell line (HL-60). The presence of a cytosol receptor and induction of differentiation. Biochem. J., 204: 713–719,1982.

    CAS  Google Scholar 

  43. Suda, T., Takahashi, N., and Martin, T. J. Modulation of osteociast differentiation. Endocrine Rev., 13: 66–80, 1992.

    CAS  Google Scholar 

  44. Eisman, J. A., Koga, M., Sutherland, R. L., Barkla, D. H., and Tutton, P. J. M. 1α,25-Dihydroxyvitamin D3 and the regulation of human cancer cell replication. Proc. Soc. Exp. Biol. Med., 191: 221–226,1989.

    CAS  Google Scholar 

  45. DeLuca, H. F. Application of new vitamin D compounds to disease. Drug News and Perspectives, 5: 87–92,1992.

    Google Scholar 

  46. Smith, E. L., Walworth, N. C., and Holíck, M. F. Effect of 1a,25dihydroxyvitamin D3 on the morphologic and biochemical differentiation of cultured human epidermal keratinocytes grown in serum-free conditions. J. Invest. Dermatol., 86: 709–714, 1986.

    Article  CAS  Google Scholar 

  47. Holick, M. F. 1,25-Dihydroxyvitamin D3 and the skin: A unique application for the treatment of psoriasis. Proc. Soc. Exp. Biol. Med., 191: 246–257,1989.

    CAS  Google Scholar 

  48. Frampton, R. J., Suva, L. J., Eisman, J. A., Findlay, D. M., Moore, G. E., Moseley, J. M., and Martin, T. J. Presence of 1,25-dihydroxyvitamin D3 receptors in established human cancer cell lines in culture. Cancer Res., 42:1116–1119,1982.

    CAS  Google Scholar 

  49. Sandgren, M., Danforth, L., Plasse, T. F., and DeLuca, H. F. 1,25Dihydroxyvitamin D3 receptors in human carcinomas: A pilot study. Cancer Res., 51, 2021–2024, 1991.

    CAS  Google Scholar 

  50. Eisman, J. A. 1,25-Dihydroxyvitamin D3 receptor and role of 1,25(OH)2D3 in human cancer cells. In: R. Kumar (ed.), Vitamin D, Chapter 14, pp. 365–382. Boston: Martinus Nijhoff, 1984.

    Google Scholar 

  51. Eisman, J. A., Barkla, D. H., and Tutton, P. J. M. Suppression of in vivo growth of human cancer solid tumor xenografs by 1,25-dihydroxyvitamin D3. Cancer Res., 47, 21–26,1987.

    CAS  Google Scholar 

  52. Anzano, M. A., Smith, J. M., Uskokovic, M. R., Peer, C. W., Mullen, L. T., Letterio, J. J., Welsh, M. C., Shrader, M. W., Logsdon, D. L., Drive, C. L., et al. 1 a,25-Dihydroxy-16-ene-23-yne-26,27-hexafluorocholecalciferol (Ro24–5531), a new deltanoid (vitamin D analogue) for prevention of breast cancer in the rat. Cancer Res., 54(7): 1653–1656, 1994.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

DeLuca, H.F. (1995). Vitamin D, Gene Expression, and Cancer. In: Prasad, K.N., Santamaria, L., Williams, R.M. (eds) Nutrients in Cancer Prevention and Treatment. Experimental Biology and Medicine, vol 27. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0237-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0237-0_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6675-4

  • Online ISBN: 978-1-4612-0237-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics