Angiotensin-Nitric Oxide

Interaction and the Regulation of Renal Vascular Tone
  • William H. Beierwaltes
  • David H. Sigmon
Part of the Contemporary Endocrinology book series (COE, volume 1)

Abstract

The potent circulating vasoconstrictor angiotensin II (AII) and the ubiquitous endothelium-derived vasodilator, nitric oxide (NO), are endogenous vascular antagonists. The concept that the regulation of blood pressure (and vascular resistance) is the result of a balance between vasoconstriction and vasodilation may be somewhat oversimplified; nevertheless it is a natural place to begin to understand the intricate interaction between these two important modulators of vascular tone.

AII, an octapeptide hormone, is a potent vasoconstrictor. Its substrate, angiotensinogen, is produced in abundance by the liver, circulates, and is converted into angiotensin I (AI) by the enzyme renin, which is predominantly derived from the juxtaglomerular (JG) cells of the renal afferent arteriole (1). Since the substrate is generally in excess, renin is the rate-limiting step in this cascade. Renin is stored in granules in the JG cells. Its release is stimulated through several pathways. These include:

Keywords

Angiotensin Prostaglandin Acetylcholine Vasopressin Losartan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Keeton TK, Campbell WB. The pharmacologic alteration of renin release. Pharm Rev 1980;32:81–227.Google Scholar
  2. 2.
    Barajas L, Powers K. The structure of the juxtaglomerular apparatus (JGA) and the control of renin secretion; an update. J Hypertens 1984;2(Suppl. 1):3–12.Google Scholar
  3. 3.
    Beierwaltes WH, Schryver S, Sanders E, Strand J, Romero JC. Renin release selectively stimulated by prostaglandin I2 in isolated rat glomeruli. Am J Physiol 1982;243:F276–F283.PubMedGoogle Scholar
  4. 4.
    Henrich WL, McAllister EA, Smith PB, Campbell WB. Guanosine 3’5’-cyclic monophosphate as a mediator of inhibition of reran release. Am J Physiol 1988;255:F474–F478.PubMedGoogle Scholar
  5. 5.
    Beierwaltes WH. Nitric oxide participates in Caz+-mediated regulation of reran release. Hypertension 1994;23(Suppl. 1):I40–I44.PubMedCrossRefGoogle Scholar
  6. 6.
    Sigmon DH, Beierwaltes WH. AII:nitric oxide interaction and the distribution of blood flow. Am J Physiol 1993;265(R34):R1276–R1283Google Scholar
  7. 7.
    VanHoutte PM. Endothelium and the control of vascular function. Hypertension 1989;13:658--667.PubMedCrossRefGoogle Scholar
  8. 8.
    Busse R, Mulsch A. Caz+-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin. FEBS Lett 1990;265:133–136.PubMedCrossRefGoogle Scholar
  9. 9.
    Rees DD, Palmer RMJ, Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci USA 1989;86:3375–3378.PubMedCrossRefGoogle Scholar
  10. 10.
    Baylis C, Harton P, Engles K. Endothelial derived relaxing factor controls renal hemodynamics in the normal rat kidney. J Am Soc Nephrol 1990;1:875–881.PubMedGoogle Scholar
  11. 11.
    Lohmeier TE, Cowley AW. Hypertensive and renal effects of chronic low level intrarenal33. angiotensin infusion in the dog. Circ Res 1979;44:154–160.PubMedCrossRefGoogle Scholar
  12. 12.
    Porush JG, Kaloyanides GJ, Cacciaguida RJ, Rosen SM. The effects of All and renal water and electrolyte excretion in normal and caval dogs. J Clin Invest 1967;46:2109–2122.PubMedCrossRefGoogle Scholar
  13. 13.
    Rosivall L, Naval G. Effects on renal hemodynamics of intraarterial infusion of angiotensin I and II. Am J Physiol 1983;254:F181–F187.Google Scholar
  14. 14.
    Sigmon DH, Carretero OA, Beierwaltes WH. Angiotensin-dependence of endothelium-mediated renal hemodynamics. Hypertension 1992;20:643–650.PubMedCrossRefGoogle Scholar
  15. 15.
    Takenaka T, Mitchell KD, Navar LG. Contribution of AII to renal hemodynamic and excretory responses to nitric oxide synthesis inhibition in the rat. J Am Soc Neph 1993;4:1046–1053.Google Scholar
  16. 16.
    Di Nicola L, Blantz RC, Gabbai FB. Nitric oxide and AII. Glomerular and tubular interaction in the rat. J Clin Invest 1992;89:1248–1256.CrossRefGoogle Scholar
  17. 17.
    Baylis C, Harvey J, Engles K. Acute nitric oxide blockade amplifies the renal vasoconstrictor actions of AII. J Am Soc Neph 1994;5:211–214.Google Scholar
  18. 18.
    Sigmon DH, Carretero OA, Beierwaltes WH. Plasma renin activity and the renal response to nitric oxide synthesis inhibition. J Am Soc Neph 1992;3:1288–1294.Google Scholar
  19. 19.
    Pucci ML, Nasjletti A. Pressor and renal vasoconstrictor effects of NG-nitro-L-arginine as affected by blockade of pressor mechanisms mediated by the sympathetic nervous system, angiotensin prostanoids and vasopressin. J Pharm Exp Ther 1992;261:240–245.Google Scholar
  20. 20.
    Beierwaltes WH, Potter DL, Kiel CS, Pegoraro AA, Sigmon DH, Carretero OA. Pressor response to inhibition of endothelium-derived relaxing factor (EDRF) is amplified in hypertension. Physiologist 1991;34:250.Google Scholar
  21. 21.
    Pegoraro AA, Carretero OA, Sigmon DH, Beierwaltes WH. Sympathetic modulation of endothelium-derived relaxing factor. Hypertension 1992;19:643–647.PubMedCrossRefGoogle Scholar
  22. 22.
    Haber RL, Decker PJ, Einhaupt KM. Angiotensin degradation products mediate endothelium-dependent dilation of the rabbit brain arterioles. Circ Res 1991;68:1621–1627.CrossRefGoogle Scholar
  23. 23.
    Ito S, Johnson CS, Carretero OA. Modulation of AII vasoconstriction by endothelium-derived relaxing factor in the isolated microperfused rabbit afferent arteriole. J Clin Invest 1991;87:1656–1663.PubMedCrossRefGoogle Scholar
  24. 24.
    Yoshida H, Tamaki T, Aki Y, Kimura S, Takenaka I, Abe Y. Effects of AII on isolated rabbit afferent arterioles. Jpn J Pharmacol 1994;66:457–464.PubMedCrossRefGoogle Scholar
  25. 25.
    Ito S, Arima S, Ren YL, Juncos LA, Carretero OA. Endothelium-derived relaxing factor/nitric oxide modulates AII action in the isolated microperfused rabbit afferent but not efferent arteriole. J Clin Invest 1993;91:2012–2019.PubMedCrossRefGoogle Scholar
  26. 26.
    Ohishi K, Carmines P, Inscho EW. Navar LG. EDRF-AII interactions in rat juxtamedullary afferent and efferent arterioles. Am J Physiol 1992;263:F900–F906.Google Scholar
  27. 27.
    Baylis C, Engles K, Samsell L, Harton P. Renal effects of acute endothelium-derived relaxing factor blockade are not mediated by AII. Am J Physiol 1993;26 4:F74–F78.Google Scholar
  28. 28.
    Sigmon DH, Carretero OA, Beierwaltes WH. Renal versus femoral hemodynamic response to endothelium-derived relaxing factor synthesis inhibition. J Vasc Res 1993;30:218–223.PubMedCrossRefGoogle Scholar
  29. 29.
    Sigmon DH, Beierwaltes WH. AII:endothelium derived nitric oxide interaction in conscious rats. J Am Soc Neph 1994;4:1675–1682.Google Scholar
  30. 30.
    Broten TP, Miyashiro JK, Moncada S, Reigl EO. Role of endothelium-derived relaxing factor in parasympathetic coronary vasodilation. Am J Physiol 1992;262:H1579–H1584.PubMedGoogle Scholar
  31. 31.
    Loeb AL, Longnecher DE. Inhibition of endothelium-derived relaxing factor-dependent circulatory control in intact rats. Am J Physiol 1992;262:H1494–H1500.PubMedGoogle Scholar
  32. 32.
    Pique JM, Whittle BJR, Esplugues N.The vasodilator role of endogenous nitric oxide in the rat gastric microcirculation. Eur J Pharmacol 1989;174:293–296.PubMedCrossRefGoogle Scholar
  33. 33.
    Wang YX, Gavras I, Wierzba T, Bernard L, Gavras H. Inhibition of nitric oxide, bradykinin and Prostaglandins in normal rats. Hypertension 1991;19(Suppl. II):II225–II261.Google Scholar
  34. 34.
    Vidal MJ, Romero JC, VanHoutte PM.Endothelium-derived relaxing factor inhibits renin release. Eur J Pharm 1988;149:401,402.CrossRefGoogle Scholar
  35. 35.
    Beierwaltes WH, Carretero OA. Nonprostanoid endothelium-derived factors inhibit renin release. Hypertension 1992;19(Suppl. II):II68–II73.Google Scholar
  36. 36.
    Villarreal D, Freeman RH, Johnson RA. Renal effects of ANF (95–126), a new atrial peptide analogue, in dogs with experimental heart failure. Am J Hypertens 1991;4:508–515.PubMedCrossRefGoogle Scholar
  37. 37.
    Sigmon DH, Carretero OA, Beierwaltes WH. Endothelium-derived relaxing factor regulates renin release in vivo. Am J Physiol 1992;263:F256–F261.PubMedGoogle Scholar
  38. 38.
    Johnson RA, Freeman RH. Renin release in rats during blockade of nitric oxide synthesis. Am J Physiol 1994; 266: R 1723-R 1729.Google Scholar
  39. 39.
    Kurtz A, Kaissling B, Busse R, Baier W. Endothelial cells modulate renin secretion from isolated mouse juxtaglomerular cells. J Clin Invest 1991;88:1147–1154.PubMedCrossRefGoogle Scholar
  40. 40.
    Schricker K, Kurtz A. Liberators of NO exert a dual effect on renin secretion from isolated mouse renal juxtaglomerular cells. Am J Physiol 1993;265:F180–F186.PubMedGoogle Scholar
  41. 41.
    Naess PA, Christensen G, Kirkenboen KA, Kiil F. Effect on renin release of inhibiting renal nitric oxide synthesis in anesthetized dogs. Acta Physiol Scand 1993;148:137–142.PubMedCrossRefGoogle Scholar
  42. 42.
    Persson PB, Baumann JE, Ehmke H, Hackenthal E, Kirchheim HR, Nafz B. Endothelium-derived NO stimulates pressure dependent renin release in conscious dogs. Am J Physiol 1993;264:F943–F947.PubMedGoogle Scholar
  43. 43.
    Beierwaltes WH, Sigmon DH, Carretero OA. Endothelium modulates renal blood flow but not autoregulation. Am J Physiol 1992;262:F943 F949.PubMedGoogle Scholar
  44. 44.
    Navarro J, Sanchez A, Saiz J, Ruilope LM, Garcia-Estan J, Romero JC, Moncada S, Lahera V. Hormonal, renal and metabolic alterations during hypertension induced by chronic inhibition of NO in rats. Am J Physiol 1994;267:R1516–R1521.PubMedGoogle Scholar
  45. 45.
    Salazar FJ, Alberola A, Pinilla JM, Romero JC, Quesada T. Salt-induced increase in arterial pressure during nitric oxide synthesis inhibition. Hypertension 1993;22:49–55.PubMedCrossRefGoogle Scholar
  46. 46.
    Morton JJ, Beattie EC, Speirs A, Gulliver F. Persistent hypertension following inhibition of nitric oxide formation in the young Wistarrat: role ofrenin and vascular hypertrophy. J Hypertens 1993;11:1083–1088.PubMedCrossRefGoogle Scholar
  47. 47.
    Ribeiro MO, Antunes E, deNucci G, Lovisolo SM, Zatz R. Chronic inhibition of nitric oxide synthesis; a new model of arterial hypertension. Hypertension 1992;20:298–303.PubMedCrossRefGoogle Scholar
  48. 48.
    Hropo M, Grensch H, Klaus E, Langer KH, Linz W, Wiemer G, Scholkens BA. Ramapril prevents the detrimental sequels of chronic NO synthesis inhibition in rats: hypertension, cardiac hypertrophy and renal insufficiency. Naunyn-Schmiedeberg’s Arch Pharm 1994;350:646–652.Google Scholar
  49. 49.
    Okamura M, Konishi Y, Nishimura M, Umetani N, Iwai J, Negoro N, Inoue T, Takeda T, Kanayama Y. Enhancement of hypertension and renal injury by salt loading during chronic nitric oxide inhibition. Effects of TCV-116, a novel All receptor antagonist. Blood Pressure 1994;5:75–78.PubMedGoogle Scholar
  50. 50.
    Johnson RA, Freeman RH. Sustained hypertension in the rat induced by chronic blockade of nitric oxide production. Am J Hypertension 1992;5:919–922.Google Scholar
  51. 51.
    Jover B, Herizi A, Ventre F, Dupont M, Mimran A. Sodium and angiotensin in hypertension induced by long term nitric oxide blockade. Hypertension 1993;21:944–948.PubMedCrossRefGoogle Scholar
  52. 52.
    Pollock DM, Polakowski JS, Divish BJ, Opgenorth TJ. Angiotensin blockade reverses hypertension during long-term nitric oxide synthase inhibition. Hypertension 1993;21:660–666.PubMedCrossRefGoogle Scholar
  53. 53.
    Qui C, Engles K, Baylis C. All and alpha 1 adrenergic tone in chronic nitric oxide blockade induced hypertension. Am J Physiol 1994;266:R1470–R1476.Google Scholar
  54. 54.
    Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980;288:373–376.PubMedCrossRefGoogle Scholar
  55. 55.
    Ortenberg JM, Cook AK, Inscho EW, Carmines PK. Attenuated afferent arteriolar response to acetylcholine in Goldblatt hypertension. Hypertension 1992;19:785–789.PubMedCrossRefGoogle Scholar
  56. 56.
    Lockette W, Otsuka Y, Carretero OA. The loss of endothelium-dependent vascular relaxation in hypertension. Hypertension 1986;8(Suppl. II):II61–II66.PubMedGoogle Scholar
  57. 57.
    Miller MJS, Pinto A, Mullane KM. Impaired endothelium-dependent relaxations in rabbits subjected to aortic coarctation hypertension. Hypertension 1987;10:164–170.PubMedCrossRefGoogle Scholar
  58. 58.
    Diedrich D, Yang Z, Buhler FR, Luscher TF Impaired endothelium-dependent relaxation in hypertensive resistance arteries involves cyclooxygenase pathway. Am J Physiol 1988;258:H445–H451Google Scholar
  59. 59.
    Sim MK, Singh M. Decreased responsiveness of the aortae of hypertensive rats to acetylcholine, histamine and noradrenaline. Br J Pharm 1987;90:147–150.CrossRefGoogle Scholar
  60. 60.
    .Tesfamariam B, Halpern W. Endothelium-dependent and endothelium-independent vasodilation in resistance arteries from hypertensive rats. Hypertension 1988;11:440–444PubMedCrossRefGoogle Scholar
  61. 61.
    Luscher TF, Raij L, Vanhoutte PM. Endothelium-dependent responses in normotensive and hypertensive Dahl rats. Hypertension 1987;9:157–163.PubMedCrossRefGoogle Scholar
  62. 62.
    Van deVoorde, Leusen I. Endothelium-dependent and independent relaxation of aortic rings from hypertensive rats. Am J Physiol 1986;250:H711–H717.Google Scholar
  63. 63.
    Dohi Y, Criscione L, Luscher TF. Renovascular hypertension impairs formation of endothelium-derived relaxing factor and sensitivity to endothelin-1 in resistance arteries. 1991;104:349–354.Google Scholar
  64. 64.
    Nakamura T, Prewitt RL. Effect of NG-monomethyl-L-arginine on endothelium-dependent relaxation in arterioles of one kidney, one clip hypertensive rats. Hypertension 1991;17:785–789.CrossRefGoogle Scholar
  65. 65.
    Lindner L, Kiowski W, Buhler FR, Luscher T. Indirect evidence for release of endothelium-derived relaxing factor in human forearm circulation in vivo. Blunted response in essential hypertension. Circulation 1990;81:1762–1767.CrossRefGoogle Scholar
  66. 66.
    Panza JA, Quyyumi AA, Brush JE, Epstein SE. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. New Engl J Med 1990;323:22–27.PubMedCrossRefGoogle Scholar
  67. 67.
    Luscher TF. Heterogeneity of endothelial dysfunction in hypertension. Eur Heart J 1992;13(Suppl. D):50–55.PubMedCrossRefGoogle Scholar
  68. 68.
    Lin L, Nasjletti A. Prostanoid-mediated vascular contraction in normotensive and hypertensive rats. Eur J Pharm 1992;220:49–53.CrossRefGoogle Scholar
  69. 69.
    Sigmon DH, Beierwaltes WH. Interaction between nitric oxide and endothelium-derived constricting factor in renovascular hypertension. Hypertension 1995;25:803–808.PubMedCrossRefGoogle Scholar
  70. 70.
    Lin L, Balazy M, Pagano PJ, Nasjletti A. Expression of prostaglandin 112-mediated mechanism of vascular contraction in hypertensive rats; relation to lipoxygenase and prostacyclin synthase activities. Circ Res 1994:74;197–205.PubMedCrossRefGoogle Scholar
  71. 71.
    Lin L, Mistry M, Stier CT, Nasjletti A. Role of prostanoids in renin-dependent and renin-independent hypertension. Hypertension 1991;17:517–525.PubMedCrossRefGoogle Scholar
  72. 72.
    Mistry M, Muirhead EE, Yamaguchi Y, Nasjletti A. Renal function in rats with All-salt-induced hypertension: effect of thromboxane synthesis inhibition and receptor blockade. J Hypertens 1990;8:73–83.CrossRefGoogle Scholar
  73. 73.
    Wilcox CS, Welch WJ. All and thromboxane in the regulation of blood pressure and renal function. Kidney Int 1990:38(Suppl. 30);S81–S83.Google Scholar
  74. 74.
    Wilcox CS, Welch WJ. Thromboxane mediation of the pressor response to infused AII. Am J Hypertens 1990;3:242–249.PubMedGoogle Scholar
  75. 75.
    Wilcox CS, Welch WJ, Snellen H. Thromboxane mediated the renal hemodynamics response to infused AII. Kidney Int 1991;41:1090–1097.CrossRefGoogle Scholar
  76. 76.
    Mais DE, Saussy DL, Chaikouni A, Kochel PJ, Knapp DR, Hananaka N, Halushka PV. Pharmacologic characterization of human and canine thromboxane A2/prostaglandin H2 receptors in platelets and blood vessels: evidence for different receptors. J Pharmacol Exp Ther 1985;233:418–424.PubMedGoogle Scholar
  77. 77.
    Mistry M, Nasjletti A. Role of pressor prostanoids in rats with angiotensin-salt induced hypertension. Hypertension 1988;11:758–762.PubMedCrossRefGoogle Scholar
  78. 78.
    Himmelstein SI, Klotman PE. The role of thromboxane in two-kidney, one-clip Goldblatt hypertension in rats. Am J Physiol 1989;257:F190–F196.PubMedGoogle Scholar
  79. 79.
    Mistry M, Nasjletti A. Contrasting effect of thromboxane synthase inhibitor and a thromboxane receptor antagonist on the development of AII-salt induced hypertension. J Pharmacol Exp Ther 1990;253:90–94.PubMedGoogle Scholar
  80. 80.
    Yamaguchi Y, Fenoy FJ, Roman RJ, Nasjletti A. AII influences the renal hemodynamic responses to blockade of thromboxane A2 and prostaglandin H2 response. J Pharmacol Exp Ther 1992;263:905–909.PubMedGoogle Scholar
  81. 81.
    Sigmon DH, Beierwaltes WH. Renal nitric oxide and AII interaction in renovascular hypertension. Hypertension 1993;22:237–242.PubMedCrossRefGoogle Scholar
  82. 82.
    Sigmon DH, Beierwaltes WH. Degree of renal artery stenosis alters nitric oxide regulation of renal hemodynamics. J Am Soc Nephrol 1994;5:1369–1377.PubMedGoogle Scholar
  83. 83.
    Sigmon DH, Beierwaltes WH. Nitric oxide influences blood flow distribution in renovascular hypertension. Hypertension 1994;23(Suppl. 1):I34–I39.PubMedCrossRefGoogle Scholar
  84. 84.
    Pegoraro AA, Carretero OA, Sigmon DH, Beierwaltes WH. Blood pressure response to nitroarginine is enhanced in young Dahl salt-sensitive rats. FASEB J 1991;5:A380.Google Scholar
  85. 85.
    Ono H, Ono Y, Frohlich ED. Nitric oxide synthase inhibition in spontaneously hypertensive rats: systemic renal and glomerular hemodynamics. Hypertension 1995;26:256–262.CrossRefGoogle Scholar
  86. 86.
    Beierwaltes WH. Possible endothelial modulation of prostaglandin-stimulated renin release. Am J Physiol 1990;258:F1363–F1371.Google Scholar
  87. 87.
    Leenen FHH, DeJong W. A solid silver clip for induction of predictable levels of renal hypertension in the rat. J Applied Physiol 1971;31:142–144.Google Scholar
  88. 88.
    Beierwaltes WH, Potter DL, Carretero OA, Sigmon DH. Nitric oxide synthesis inhibition blocks reversal of 2K,1C renovascular hypertension after unclipping. Hypertension 1995;25:174–179.PubMedCrossRefGoogle Scholar
  89. 89.
    Sigmon DH, Beierwaltes WH. Endothelium-derived nitric oxide (EDNO) in the chronic, angiotensin II (AII) independent phase of 2K,1C renovascular hypertension. J Am Soc Nephrol 1994;5:592.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • William H. Beierwaltes
  • David H. Sigmon

There are no affiliations available

Personalised recommendations