Regulation of Intracellular pH and the Na+/H+ Antiporter in Vascular Smooth Muscle

  • Michael S. LaPointe
  • Daniel Batlle
Part of the Contemporary Endocrinology book series (COE, volume 1)

Abstract

The hydrogen ion concentration, usually expressed as pH, is highly regulated in both the intracellular and extracellular environments(1 2). Although the body has developed multiple systems to maintain pH homeostasis, changes in the pH of the extracellular and intracellular environments can occur under pathophysiological conditions. It has also become apparent in recent years that transient changes in intracellular pH (pHi) are part of the vascular smooth muscle cell (VSMC) response to physiologic stimuli.

Keywords

Ischemia Cadmium Adenosine Oligomer Angiotensin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Roos A, Boron W. Intracellular pH. Physiol Rev 1981;61:296–434.PubMedGoogle Scholar
  2. 2.
    Saleh A, Batlle D. Basic mechanisms of intracellular pH homeostasis in lymphocytes. Sem Nephrol 1991;11:3–15.Google Scholar
  3. 3.
    Redon J, Batlle D. Regulation of intracellular pH in the spontaneously hypertensive rat. Role of bicarbonate-dependent transporters. Hypertension 1994;23:503–512.PubMedCrossRefGoogle Scholar
  4. 4.
    Frelin C, Vigne P, Ladoux A, Lazdunski M. The regulation of the intracellular pH in cells from vertebrates. Eur J Biochem 1988;174:3–14.PubMedCrossRefGoogle Scholar
  5. 5.
    Fliegel L, Frohlich O. The Na+/H+exchanger: an update on structure, regulation and cardiac physiology. Biochem J 1993;296:273–285.PubMedGoogle Scholar
  6. 6.
    Saleh A, Rombola G, Batlle D. Intracellular buffering power and its dependency on intracellular pH. Kidney Int 1991;39:282–288.PubMedCrossRefGoogle Scholar
  7. 7.
    Aronson P, Nee J, Suhm M Modifier role of internal H+in activating the Na± H+ exchanger in renal microvillus membrane vesicles. Nature 1982;299:161–163.PubMedCrossRefGoogle Scholar
  8. 8.
    Franchi A, Cragoe E, PouyssÄgur J. Isolation and properties of fibroblast mutants overexpressing an altered Na+/H+ antiporter. J Biol Chem 1986;261:14,614–14,620.PubMedGoogle Scholar
  9. 9.
    Franchi A, Perruca-Lostanen D, PouyssÄgur J. Functional expression of a transfectedNa+/H+antiporter human gene into antiporter-deficient mouse L cells. Proc Natl Acad Sci USA 1986;83:9388–9392.PubMedCrossRefGoogle Scholar
  10. 10.
    PouyssÄgur J, Sardet C, Franchi A, L’Allemain G, Paris S. A specific mutation abolishing Na+/H antiport activity in hamster fibroblasts precludes growth at neutral and acidic pH. Proc Natl Acad Sci USA 1984;81:4833–4837.CrossRefGoogle Scholar
  11. 11.
    Sardet C, Franchi A, PouyssÄgur J. Molecular cloning, primary structure, and expression of the human growth factor-activatable Na+/H+antiporter. Cell 1989;56:271–280.CrossRefGoogle Scholar
  12. 12.
    Noel J, Pouyssegur J. Hormonal regulation, pharmacology, and membrane sorting of vertebrate Na+H+exchanger isoforms. Am J Physiol 1995;268:C283–C296.PubMedGoogle Scholar
  13. 13.
    Fliegel L, Dyck JR. Molecular biology of the cardiac sodium/hydrogen exchanger. Cardiovas Res 1995;29:155–159.Google Scholar
  14. 14.
    LaPointe MS, Batlle DC. Na+/H+exchange and vascular smooth muscle proliferation. Am J Med Sci 1994;307(Suppl. 1): S9–S16.PubMedGoogle Scholar
  15. 15.
    Wakabayashi S, Sardet C, Fafournoux P, Counillon L, Meloche S, PagÄs G, PouyssÄgur J. Structure function of the growth factor-activatable Na+/H+ exchanger (NHE 1). Rev Physiol Biochem Pharmacol 1992;119:157–185.PubMedGoogle Scholar
  16. 16.
    Grinstein S, Rotiu D, Mason M. Na+/H+ exchange and growth factor-induced cytosolic pH changes. Role in cellular proliferation. Biochem Biophys Acta 1989;988:73–97.PubMedCrossRefGoogle Scholar
  17. 17.
    Tse M, Levine S, Yun C, Brant S, Counillon L, Pouyssegur J, Donowitz M. Structure/function studies of the epithelial isoform of the mammalian Na+/H+exchanger gene family. J Mem Biol 1993;135:93–108.CrossRefGoogle Scholar
  18. 18.
    Tse C-M, Levine SA, Yun CHC, Montrose MH, Littles PJ, Pouyssegur J, Donowitz M. Cloning and expression of a rabbit cDNA encoding a serum-activated ethylisopropylamiloride-resistant epithelial Na+/H+ exchanger isoform (NHE-2). J Biol Chem 1993;268:11,917–11,924.PubMedGoogle Scholar
  19. 19.
    Tse CM, Watson AJM, Ma AI, Pouyssegur J, Donowitz M. Cloning and functional expression of a second novel rabbit ileal villus epithelial cell Na+/H+ exchanger (NHE-2). Gastroenterology 1992;100:A258.Google Scholar
  20. 20.
    Tse C-M, Brant SR, Walker MS, Pouyssegur J, Donowitz M. Cloning and sequencing of a rabbit cDNA encoding an intestinal and kidney-specific Na+/H+ exchanger isoform (NHE-3). J Biol Chem 1992;267:9340–9346.PubMedGoogle Scholar
  21. 21.
    Tse CM, Ma AI, Yang VW, Watson AJM, Levine S, Montrose MH, Potter J, Sardet C, Pouyssegur J, Donowitz M. Molecular cloning and expression of a cDNA encoding the rabbit ileal villus cell basolateral membrane Na+/H+ exchanger. EMBO J 1991;10:1957–1967.PubMedGoogle Scholar
  22. 22.
    Wakabayashi S, Fafoumoux P, Sardet C, PouyssÄgur J. The Na+/H+antiporter cytoplasmic domain mediates growth factor signals and controls “Hf-sensing.” Proc Natl Acad Sci USA 1992;89:2424–2428.PubMedCrossRefGoogle Scholar
  23. 23.
    Borgese F, Sardet C,. Cappadoro M, Pouyssegor J, Motais R. Cloning and expression of a cAMPactivated Na+/H+exchanger: Evidence that the cytoplasmic domain mediates hormonal regulation. Proc Natl Acad Sci USA 1992;89:6765–6769.PubMedCrossRefGoogle Scholar
  24. 24.
    Baird N, Menon A, Wang Z, Meneton P, Su Y, Orlowski J, Shull G. Identification and cloning of a fifth member of the Na+/H+exchanger gene family. J Am Soc Nephrol 1994;5:246.Google Scholar
  25. 25.
    Orlowski J, Kandasamy RA, Shull GE. Molecular cloning of putative members of the Na/H exchanger gene family. J Biol Chem 1992;267:9331–9339.PubMedGoogle Scholar
  26. 26.
    Mattei M, Sardet C, Franchi A, Pouyssegur J. The human amiloride-sensitive Na*/H* antiporter is localized to chromosome 1 by in situ hybridization. Cytogenet Cell Genet 1988;48:6–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Kolyada A, Madias N. Proximal regulatory elements and nuclear activities for transcription of the human Na*/H+ exchanger (NHE-1) gene. Biochem Biophys Acta 1994;1217:54–64.PubMedCrossRefGoogle Scholar
  28. 28.
    Kolyada A, Madias N. Transcriptional regulation of the human Na*/H* exchanger (NHE-1) gene. In: DeSanto NG, Campaso G, eds. Acid-Base and Electrolyte Balance. Molecular, Cellular, and Clinical Aspects. Instituto Italiano per gli Studi Filosofici, Naples, Italy, 1995, pp. 19–28.Google Scholar
  29. 29.
    Szpirer C, Szpirer J, Riviere M, Levan G, Orlowski J. Chromosomal assignment of four genes encoding Na/H exchanger isoforms in human and rat. Mammalian Genome 1994;5:153–159.PubMedCrossRefGoogle Scholar
  30. 30.
    Fafournoux P, Noel J, Pouyssegur J. Evidence that Na*/H+exchanger isoforms NHE1 and NHE3 exist as stable dimers in membranes with a high degree of specificity for homodimers. J Biol Chem 1994;269:2589–2596.PubMedGoogle Scholar
  31. 31.
    Counillon L, Pouyssegur J. Structure-function studies and molecular regulation of the growth factor activatable sodium-hydrogen exchanger (NHE-1). Cardiovasc Res 1995;29:147–154.PubMedGoogle Scholar
  32. 32.
    Brock T, Lewis L, Smith J. Angiotensin increasesNa*entry and Na*/K* transport in cultures of smooth muscle from rat aorta. Proc Natl Acad Sci USA 1982;79:1438–1442.PubMedCrossRefGoogle Scholar
  33. 33.
    Smith J, Brock T. Analysis of angiotensin-stimulated sodium transport in cultured smooth muscle cells from rat aorta. J Cell Physiol 1983;114:284–290.PubMedCrossRefGoogle Scholar
  34. 34.
    Owen N. Platelet-derived growth factor stimulatesNa* influx in VSMCs. Am J Physiol 1984;247: C501–0505.PubMedGoogle Scholar
  35. 35.
    Little PJ, Edward J, Cragoe J, Bobik A. Na-H exchange is a major pathway for Na influx in rat vascular smooth muscle. Am J Physiol I986;251:C707–C712.PubMedGoogle Scholar
  36. 36.
    Bobik A, Grooms A, Little P, Cragoe E, Grinpukel S. Ethylisopropyl-amiloride-sensitive pH control mechanisms modulate VSMC growth. Am J Physiol 1991;255:C581–C588.Google Scholar
  37. 37.
    Weissberg P, Little P, Cragoe E, Bobik A. Na-H antiport in cultured rat aortic smooth muscle: its role in cytoplasmic pH regulation. Am J Physiol 1987;253:C193–C198.PubMedGoogle Scholar
  38. 38.
    LaPointe MS, Batlle DC. Na-dependent, HCO3-dependent acid extrusion in vascular smooth muscle. Clin Res 1991;39:362A (abstract).Google Scholar
  39. 39.
    LaPointe M, Ye M, Moe O, Alpern R, Batlle D. Na*/H+antiporter (NHE-1 isoform) in cultured vascular smooth muscle from the spontaneously hypertensive rat. Kidney Intern 1995;47:78–87.CrossRefGoogle Scholar
  40. 40.
    Moolenaar W, Tertoolen L, de Laat S. Na*/Hr exchange and cytosolic pH in the action of growth factors in human fibroblasts. Nature 1983;304:645–648.PubMedCrossRefGoogle Scholar
  41. 41.
    Moolenaar W, Tertoolen L, de Last S. The regulation of cytoplasmic pH in human fibroblasts. J Biol Chem 1984;259:7563–7569.PubMedGoogle Scholar
  42. 42.
    LaPointe M, Batlle D. Control of steady state intracellular pH (pHi) in VSMCs (vsmc). Am J Hypertens 1989;2:69A.Google Scholar
  43. 43.
    Rao G, Sardet C, PouyssÄgur J, Berk B. Differential regulation of Na*/H* antiporter gene expression in VSMCs by hypertrophic and hyperplastic stimuli. J Biol Chem 1990;265:19,393–19,396.PubMedGoogle Scholar
  44. 44.
    Lucchesi PA, DeRoux N, Berk BC. Na(+)-H* exchanger expression in vascular smooth muscle of spontaneously hypertensive and Wistar-Kyoto rats. Hypertension 1994;24:734–738.PubMedCrossRefGoogle Scholar
  45. 45.
    Balkovetz D, Wang D, Warnock D. The cytosolic tail influences H*-affinity and maximal velocity of the human Na*/H+ exchanger (NHE-1). J Am Soc Nephrol 1994;5:265.Google Scholar
  46. 46.
    Otsu K, Kinesella J, Sacktor B, Froelich J. Transient state kinetic evidence for an oligomer in the mechanism of Na-H+ exchange. Proc Natl Acad Sci USA 1989;86:4818–4822.PubMedCrossRefGoogle Scholar
  47. 47.
    Otsu K, Kinesella J, Heller P, Froelich J. Sodium dependence of the Na(+)-W exchanger in the pre-steady state. Implications for the exchange mechanism. J Biol Chem 1993;268:3184–3193.PubMedGoogle Scholar
  48. 48.
    Clark J, Limbird L. Na(+) -H* exchanger subtypes: a predictive review. Am J Physiol 1991;261: C945–C953.PubMedGoogle Scholar
  49. 49.
    Counillon L, Franchi A, Pouyssegur J. A point mutation of the Na*/H+exchange gene (NHE-1) and amplification of the mutated allele confer amiloride resistance upon chronic acidosis. Proc Natl Acad Sci USA 1993;90:4508–4512.PubMedCrossRefGoogle Scholar
  50. 50.
    Goss G, WoodsideM, Wakabayashi S, Pouyssegur J, Waddell T, Downey G, Grinstein S. ATP dependence of NHE-1, the ubiquitous isoform of the Na*/H+ antiporter. J Biol Chem 1994;269:8741–8748.PubMedGoogle Scholar
  51. 51.
    Grinstein S, Rothstein A. Mechanisms of regulation of the Na*/H+ exchanger. J Mem Biol 1986;90:1–12.CrossRefGoogle Scholar
  52. 52.
    Sardet C, Counillon L, Franchi A, PouyssAgur J. Growth factors induce phosphorylation of the Na+/+ antiporter, glycoprotein of 110 kD. Science 1990;247:723–726.PubMedCrossRefGoogle Scholar
  53. 53.
    Sardet C, Fafournoux P, PouyssAgur J. A-thrombin, EGF and okadaic acid activate the Na+/+ exchanger, NHE-1, by phosphorylating a set of common sites. J Biol Chem 1991;266:1916–1917.Google Scholar
  54. 54.
    Wakabayashi S, Bertrand B, Shigekawa M, Fafournoux P, Pouyssegur J. Growth factor activation and “H(+)-sensing” of the Na*/H* exchanger isoform 1(NHE 1). Evidence for an additional mechanism not requiring direct phosphorylation. J Biol Chem 1994;269:5583–5588.PubMedGoogle Scholar
  55. 55.
    Bertrand B, Wakabayashi S, Ikeda T, Pouyssegur J, Shigekawa M. The Na+/H+exchanger isoform 1 (NHE1) is a novel member of the calmodulin-binding proteins. Identification and characterization of calmodulin-binding sites. J Biol Chem 1994;269:13,703–13,709.PubMedGoogle Scholar
  56. 56.
    Wakabayashi S, Bertrand B, Ikeda T, Pouyssegur J, Shigekawa M. Mutation of calmodulin-binding site renders the Na*/H+ exchanger (NHE1) highly H(+)-sensitive and Caz+ regulation-defective. J Biol Chem 1994;269:13,710–13,715.PubMedGoogle Scholar
  57. 57.
    Aronson P. Kinetic properties of the plasma membrane Na+ H+ exchanger. Annu Rev Physiol 1985;47:545–560.PubMedCrossRefGoogle Scholar
  58. 58.
    Saleh A, Batlle D. Kinetic properties of the Na+/H+ antiporter of lympocytes from the spontaneously hypertensive rat. J Clin Invest 1990;85:1734–1739.PubMedCrossRefGoogle Scholar
  59. 59.
    Berk BC, Aronow MS, Brock TA, Edward Cragoe J, Michael A, Gimbrone J, Alexander RW. Angiotensin II-stimulated Na+/H+exchanger in cultured VSMCs. J Biol Chem 1987;262:5057–5064.PubMedGoogle Scholar
  60. 60.
    Lucchesi PA, Berk BC. Regulation of sodium-hydrogen exchange in vascular smooth muscle. Cardiovasc Res 1995;29:172–177.PubMedGoogle Scholar
  61. 61.
    Batlle D, Redon J, Gutterman C, LaPointe M, Saleh A, Rombola G, Ye M, Gomez L, Sobrero M. Acid-base status and intracellular pH regulation in lymphocytes from rats with genetic hypertension. J Am Soc Nephrol 1994;5: S6–S11.Google Scholar
  62. 62.
    LaPointe M, Bacallao R, Batlle D. Differential expression of the NHE-1 isoform of the Na*/H+antiporter in lymphocytes and cultured VSMCs from the spontaneously hypertensive rat. J Am Soc Nephrol 1994;5:543.Google Scholar
  63. 63.
    Moolenaar W, Boonstra J, van der Saag P, de Laat S. Sodium/proton exchange in mouse neuroblastoma cells. J Biol Chem 1981;256:12,883–12,887.PubMedGoogle Scholar
  64. 64.
    Moolenaar W, Mummery C, van der Saag P, de Laat S. Rapid ionic events and the initiation of growth in serum-stimulated neuroblastoma cells. Cell 1982;23:789–798.CrossRefGoogle Scholar
  65. 65.
    Moolenaar W, Tertoolen L, de Laat S. Phorbol ester and diacylglycerol mimic growth factors in raising cytoplasmic pH. Nature 1984;312:371–374.PubMedCrossRefGoogle Scholar
  66. 66.
    Okada K, Ishikawa S, Saito T. Mechanisms of vasopressin-induced increase in intracellular Na+ in VSMCs. Am J Physiol 1991;261:F1007–F1011.PubMedGoogle Scholar
  67. 67.
    Kikeri D, Zeidel M, Ballermann B, Brenner B, Hebert S. pH regulation and response to AVP in A10 cells differ markedly in the presence vs. absence of CO2-HCO3. Am J Physiol 1990;259:C471–C483.PubMedGoogle Scholar
  68. 68.
    Ganz M, Boyarsky G, Boron W, Sterzel R. Effects of angiotensin II and vasopressin on intracellular pH of glomerular mesangial cells. Am J Physiol 1988;254:F787–F794.PubMedGoogle Scholar
  69. 69.
    Ye M, Flores G, Batlle D. Angiotensin II and angiotensin 1–7 effects on free cytosolic sodium and intracellular pH and the Na+/H+ antiporter in vascular smooth muscle. Hypertension 1996;27:72–78.PubMedCrossRefGoogle Scholar
  70. 70.
    Johnson E, Theler J, Capponi A, Vallotton M. Characterization of oscillations in cytosolic free Caz+concentration and measurement of cytosolic Na+ concentration changes evoked by angiotensin II and vasopressin in individual rat aortic smooth muscle cells. Use of microfluorometry and digital imaging. J Biol Chem 1991;266:12,618–12,626.PubMedGoogle Scholar
  71. 71.
    Mene P, Dubyak G, Scarpa A, Dunn M. Regulation of cytosolic pH of cultured mesangial cells by prostaglandin F2 alpha and thromboxane A2. Am J Physiol 1991;260:C159–C166.PubMedGoogle Scholar
  72. 72.
    Paris S, PouyssAgur J. Growth factors activate the Na*-H* antiporter in quiescent fibroblasts by increasing its affinity for intracellular H+. J Biol Chem 1984;259:10,989–10,994.PubMedGoogle Scholar
  73. 73.
    Vallega G, Canessa M, Berk B, Brock T, Alexander W. Vascular smooth muscle Na*-H+ exchanger kinetics and its activation by angiotensin II. Am J Physiol 1988;254: C751–C758.PubMedGoogle Scholar
  74. 74.
    Krug L, Berk B. Na*,K+-adenosine triphosphate regulation in hypertrophied VSMCs. Hypertension 1992;20:138–143.CrossRefGoogle Scholar
  75. 75.
    Hatori N, Fine B, Nakamura A, Cragoe E, Aviv A. Angiotensin II effect on cytosolic pH in cultured VSMCs. J Biol Chem 1987;262:5073–5078.PubMedGoogle Scholar
  76. 76.
    Taubman M, Berk B, Izumo S, Tsuda T, Alexander R, Nadal-Ginard B. Angiotensin II induces c-fos mRNA in aortic smooth muscle. Role of Caz+mobilization and PKC activation. J Biol Chem 1989;264:526–530.PubMedGoogle Scholar
  77. 77.
    Lyall F, Morton JJ, Lever AF, Cragoe EJ. Angiotensin II activates Na*-H* exchange and stimulates growth in cultured VSMCs. J Hypertens 1988;6:S438–S441.Google Scholar
  78. 78.
    Geisterfer AA, Peach MJ, Owens GK. Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res 1988;62:749–756.PubMedCrossRefGoogle Scholar
  79. 79.
    Campbell-Boswell M, Robertson AL, Jr. Effects of angiotensin II and vasopressin on human smooth muscle cells in vitro. Exp Mol Pathol 1981;35:265–276.PubMedCrossRefGoogle Scholar
  80. 80.
    Weber H, Taylor DS, Molloy CJ. Angiotensin II induces delayed mitogenesis and cellular proliferation in rat aortic smooth muscle cells. Correlation with the expression of specific endogenous growth factors and reversal by suramin. J Clin Invest 1994;93:788–798.PubMedCrossRefGoogle Scholar
  81. 81.
    Boyarsky G, Ganz M, Sterzel R, Boron W. pH regulation in single glomerular mesangial cells II. Na-dependent and -independent Cr-HCO3 -exchangers. Am J Physiol: Cell 1988;255:C857–C869.Google Scholar
  82. 82.
    Boyarsky G, Ganz M, Sterzel R, Boron W. pH regulation in single glomerular mesangial cells I. Acid extrusion in absence and presence of HCO3-. Am J Physiol: Cell 1988;255:C844–C856.Google Scholar
  83. 83.
    Korbmacher C, Helbig H, Stahl F, Wiederholt M. Evidence forNa/H exchange and Cr/HCO3 exchange in Al0 VSMCs. Pflugers Arch 1988;412:29–36.PubMedGoogle Scholar
  84. 84.
    Vigne P, Breittmayer J, Frelin C, Lazdunski M. Dual control of the intracellular pH in aortic smooth muscle cells by a cAMP-sensitive HCO3/Cr antiporter and a protein kinase c-sensitive Na+/+antiporter. J Biol Chem 1988;263:18,023–18,029.PubMedGoogle Scholar
  85. 85.
    Drenckhahn D, Zinke K, Schauer U, Appell K, Low P. Identification of immunoreactive forms of human erythrocyte band 3 in nonerythroid cells. Eur J Cell Biol 1984;34:144–150.PubMedGoogle Scholar
  86. 86.
    Alper SL. The band 3-related anion exchanger (AE) gene family. Annu Rev Physiol 1991;53:549–564.PubMedCrossRefGoogle Scholar
  87. 87.
    Kopito RR. Molecular biology of the anion exchanger gene family. Intern Rev Cytol 1990;123:177–199.CrossRefGoogle Scholar
  88. 88.
    Kopito R, HF L. Primary structure and transmembrane orientation of the murine anion exchange protein. Nature 1985;316:234–238.PubMedCrossRefGoogle Scholar
  89. 89.
    Boron W. Intracellular pH regulation in epithelial cells. Annu Rev Physiol 1986;48:377–388.PubMedCrossRefGoogle Scholar
  90. 90.
    Putnam R. pH regulatory transport systems in a smooth muscle-like cell line. Am J Physiol 1990;258:C470–0479.PubMedGoogle Scholar
  91. 91.
    Neylon CB, Little PJ, Cragoe EJ Jr, Bobik A. Intracellular pH in Human Arterial Smooth Muscle. Circ Res 1990;67:814–825.PubMedCrossRefGoogle Scholar
  92. 92.
    Little PJ, Neylon CB, Farrelly CA, Weissberg PL, Cragoe EJ, Jr, Bobik A. Intracellular pH in vascular smooth muscle: regulation by sodium-hydrogen exchange and multiple sodium dependent HCO3 mechanisms. Cardiovasc Res 1995;29:239–246.PubMedGoogle Scholar
  93. 93.
    LaPointe M, Batlle D. A NEM-sensitive, ATP dependent mechanism of Na-independent intracellular pH regulation in VSMCs (VSMC). J Am Soc Nephrol 1990;1:474.Google Scholar
  94. 94.
    McCabe RD, Young DB. Evidence of K(+)-H(+)-ATPase in VSMCs. Am J Physiol 1992;262:H1955-H 1958.PubMedGoogle Scholar
  95. 95.
    Flores G, Ye M, LaPointe M, Batlle D. Ionic effects of angiotensin II and their role in the activation of the Na+/H+ antiporter. Kidney Int 1996;49(Suppl. 55), in press.Google Scholar
  96. 96.
    Ganz M, Boyarsky G, Sterzel R, Boron W. Arginine vasopressin enhances pHiregulation in the presence of HCO3 by stimulating three acid-base transport systems. Nature 1989;337:648–651.PubMedCrossRefGoogle Scholar
  97. 97.
    Daugirdas JT, Arrieta J, Ye M, Flores G, Batlle D. Intracellular acidification associated with changes in free cytosolic calcium. J Clin Invest 1995;95:1480–1489.PubMedCrossRefGoogle Scholar
  98. 98.
    Siskind M, McCoy C, Chobanian A, Schwartz J. Regulation of intracellular calcium by cell pH in VSMCs. Am J Physiol 1989;256:C234–C240.PubMedGoogle Scholar
  99. 99.
    Putnam R, DouglassP.Effect of changes of pHion intracellular calcium in a smooth muscle-like cell line. Mol Cell Biochem 1990;99:89–95.PubMedCrossRefGoogle Scholar
  100. 100.
    Batlle DC, Peces R, LaPointe MS, Ye M, Daugirdas JT. Cytosolic free calcium regulation in response to acute changes in intracellular pH in vascular smooth muscle. Am J Physiol 1993;264:C932–C943.PubMedGoogle Scholar
  101. 101.
    Batlle D, Godinich M, LaPointe M, Munoz E, Carone F, Mehring N. Extracellular Na+ dependency of free cytosolic Cat+ regulation in aortic VSMCs. Am J Physiol 1991;261:C845–C856.PubMedGoogle Scholar
  102. 102.
    Dunnett J, Nayler W. Effect of pH on calcium accumulation and release by isolated fragments of cardiac and skeletal muscle sarcoplasmic reticulum. Arch Biochem Biophys 1979;198:434–438.PubMedCrossRefGoogle Scholar
  103. 103.
    Fabiato A, Fabiato F. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J Physiol (Lond) 1978;276:233–255.Google Scholar
  104. 104.
    Iino S, Hayashi H, Saito H, Tokuno H, Tomita T. Effects of intracellular pH on calcium currents and intracellular calcium ions in the smooth muscle of rabbit portal vein. Exp Physiol 1994;79:669–680.PubMedGoogle Scholar
  105. 105.
    Root MJ, Mackinnon R. Two identical noninteracting sites in an ion channel revealed by proton transfer. Science 1994;265:1852–1856.PubMedCrossRefGoogle Scholar
  106. 106.
    Godinich M, LaPointe M, Batlle D. Free cytosolic calcium regulation via Na+/Ca2+ exchange in VSMCs. Ann NY Acad Sci 1991;639:561–565.PubMedCrossRefGoogle Scholar
  107. 107.
    Smith J. Angiotensin-receptor signalling in cultured VSMCs. Am J Physiol 1986;250:F759–F769.PubMedGoogle Scholar
  108. 108.
    Smith J, Smith L. Extracellular Na+ dependence of changes in free Cat*, 45Ca2+ efflux, and total cell Ca2+ produced by angiotensin II in cultured arterial muscle cells. J Biol Chem 1987;262:17,455–17,460.PubMedGoogle Scholar
  109. 109.
    Nabel E, Berk B, Brock T, TW S. Na+- Ca2+ exchange in cultured VSMCs. Circ Res 1988;62:486–493.PubMedCrossRefGoogle Scholar
  110. 110.
    Brass L, Joseph S. A role for inositol triphosphate in intracellular Ca2+ mobilization and granule secretion in platelets. J Biol Chem 1985;260:15,172–15,179.PubMedGoogle Scholar
  111. 111.
    Missiaen L, Taylor C, Berridge M. Spontaneous calcium release from inositol triphosphate sensitive calcium stores. Nature 1991;352:241–244.PubMedCrossRefGoogle Scholar
  112. 112.
    Snyder S, Suppatapone S. Isolation and functional characterization of an inositol triphosphate receptor from brain. Cell Calcium 1989;10:337–342.PubMedCrossRefGoogle Scholar
  113. 113.
    Schulz I, Thevenod F, Dehlinger-Kremer M. Modulation of intracellular free Ca2+concentration by IP3-sensitive and IP3-insensitive nonmitochondrial Cat+pools. Cell Calcium 1989;10:325–336.PubMedCrossRefGoogle Scholar
  114. 114.
    Smith J, Dwyer S, Smith L. Decreasing extracellularNa+ concentration triggers inositol polyphosphate production and Cat+ mobilization. J Biol Chem 1989;264:831–837.PubMedGoogle Scholar
  115. 115.
    Cobbold P, Rink T. Fluorescence and bioluminescence measurement of cytoplasmic free calcium. Biochem J 1987;248:313–328.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Michael S. LaPointe
  • Daniel Batlle

There are no affiliations available

Personalised recommendations