Skip to main content

Regulation of Intracellular pH and the Na+/H+ Antiporter in Vascular Smooth Muscle

  • Chapter
Book cover Endocrinology of the Vasculature

Part of the book series: Contemporary Endocrinology ((COE,volume 1))

Abstract

The hydrogen ion concentration, usually expressed as pH, is highly regulated in both the intracellular and extracellular environments(1 2). Although the body has developed multiple systems to maintain pH homeostasis, changes in the pH of the extracellular and intracellular environments can occur under pathophysiological conditions. It has also become apparent in recent years that transient changes in intracellular pH (pHi) are part of the vascular smooth muscle cell (VSMC) response to physiologic stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roos A, Boron W. Intracellular pH. Physiol Rev 1981;61:296–434.

    PubMed  CAS  Google Scholar 

  2. Saleh A, Batlle D. Basic mechanisms of intracellular pH homeostasis in lymphocytes. Sem Nephrol 1991;11:3–15.

    CAS  Google Scholar 

  3. Redon J, Batlle D. Regulation of intracellular pH in the spontaneously hypertensive rat. Role of bicarbonate-dependent transporters. Hypertension 1994;23:503–512.

    Article  PubMed  CAS  Google Scholar 

  4. Frelin C, Vigne P, Ladoux A, Lazdunski M. The regulation of the intracellular pH in cells from vertebrates. Eur J Biochem 1988;174:3–14.

    Article  PubMed  CAS  Google Scholar 

  5. Fliegel L, Frohlich O. The Na+/H+exchanger: an update on structure, regulation and cardiac physiology. Biochem J 1993;296:273–285.

    PubMed  CAS  Google Scholar 

  6. Saleh A, Rombola G, Batlle D. Intracellular buffering power and its dependency on intracellular pH. Kidney Int 1991;39:282–288.

    Article  PubMed  CAS  Google Scholar 

  7. Aronson P, Nee J, Suhm M Modifier role of internal H+in activating the Na± H+ exchanger in renal microvillus membrane vesicles. Nature 1982;299:161–163.

    Article  PubMed  CAS  Google Scholar 

  8. Franchi A, Cragoe E, PouyssÄgur J. Isolation and properties of fibroblast mutants overexpressing an altered Na+/H+ antiporter. J Biol Chem 1986;261:14,614–14,620.

    PubMed  CAS  Google Scholar 

  9. Franchi A, Perruca-Lostanen D, PouyssÄgur J. Functional expression of a transfectedNa+/H+antiporter human gene into antiporter-deficient mouse L cells. Proc Natl Acad Sci USA 1986;83:9388–9392.

    Article  PubMed  CAS  Google Scholar 

  10. PouyssÄgur J, Sardet C, Franchi A, L’Allemain G, Paris S. A specific mutation abolishing Na+/H antiport activity in hamster fibroblasts precludes growth at neutral and acidic pH. Proc Natl Acad Sci USA 1984;81:4833–4837.

    Article  Google Scholar 

  11. Sardet C, Franchi A, PouyssÄgur J. Molecular cloning, primary structure, and expression of the human growth factor-activatable Na+/H+antiporter. Cell 1989;56:271–280.

    Article  Google Scholar 

  12. Noel J, Pouyssegur J. Hormonal regulation, pharmacology, and membrane sorting of vertebrate Na+H+exchanger isoforms. Am J Physiol 1995;268:C283–C296.

    PubMed  CAS  Google Scholar 

  13. Fliegel L, Dyck JR. Molecular biology of the cardiac sodium/hydrogen exchanger. Cardiovas Res 1995;29:155–159.

    CAS  Google Scholar 

  14. LaPointe MS, Batlle DC. Na+/H+exchange and vascular smooth muscle proliferation. Am J Med Sci 1994;307(Suppl. 1): S9–S16.

    PubMed  Google Scholar 

  15. Wakabayashi S, Sardet C, Fafournoux P, Counillon L, Meloche S, PagÄs G, PouyssÄgur J. Structure function of the growth factor-activatable Na+/H+ exchanger (NHE 1). Rev Physiol Biochem Pharmacol 1992;119:157–185.

    PubMed  CAS  Google Scholar 

  16. Grinstein S, Rotiu D, Mason M. Na+/H+ exchange and growth factor-induced cytosolic pH changes. Role in cellular proliferation. Biochem Biophys Acta 1989;988:73–97.

    Article  PubMed  CAS  Google Scholar 

  17. Tse M, Levine S, Yun C, Brant S, Counillon L, Pouyssegur J, Donowitz M. Structure/function studies of the epithelial isoform of the mammalian Na+/H+exchanger gene family. J Mem Biol 1993;135:93–108.

    Article  CAS  Google Scholar 

  18. Tse C-M, Levine SA, Yun CHC, Montrose MH, Littles PJ, Pouyssegur J, Donowitz M. Cloning and expression of a rabbit cDNA encoding a serum-activated ethylisopropylamiloride-resistant epithelial Na+/H+ exchanger isoform (NHE-2). J Biol Chem 1993;268:11,917–11,924.

    PubMed  CAS  Google Scholar 

  19. Tse CM, Watson AJM, Ma AI, Pouyssegur J, Donowitz M. Cloning and functional expression of a second novel rabbit ileal villus epithelial cell Na+/H+ exchanger (NHE-2). Gastroenterology 1992;100:A258.

    Google Scholar 

  20. Tse C-M, Brant SR, Walker MS, Pouyssegur J, Donowitz M. Cloning and sequencing of a rabbit cDNA encoding an intestinal and kidney-specific Na+/H+ exchanger isoform (NHE-3). J Biol Chem 1992;267:9340–9346.

    PubMed  CAS  Google Scholar 

  21. Tse CM, Ma AI, Yang VW, Watson AJM, Levine S, Montrose MH, Potter J, Sardet C, Pouyssegur J, Donowitz M. Molecular cloning and expression of a cDNA encoding the rabbit ileal villus cell basolateral membrane Na+/H+ exchanger. EMBO J 1991;10:1957–1967.

    PubMed  CAS  Google Scholar 

  22. Wakabayashi S, Fafoumoux P, Sardet C, PouyssÄgur J. The Na+/H+antiporter cytoplasmic domain mediates growth factor signals and controls “Hf-sensing.” Proc Natl Acad Sci USA 1992;89:2424–2428.

    Article  PubMed  CAS  Google Scholar 

  23. Borgese F, Sardet C,. Cappadoro M, Pouyssegor J, Motais R. Cloning and expression of a cAMPactivated Na+/H+exchanger: Evidence that the cytoplasmic domain mediates hormonal regulation. Proc Natl Acad Sci USA 1992;89:6765–6769.

    Article  PubMed  CAS  Google Scholar 

  24. Baird N, Menon A, Wang Z, Meneton P, Su Y, Orlowski J, Shull G. Identification and cloning of a fifth member of the Na+/H+exchanger gene family. J Am Soc Nephrol 1994;5:246.

    Google Scholar 

  25. Orlowski J, Kandasamy RA, Shull GE. Molecular cloning of putative members of the Na/H exchanger gene family. J Biol Chem 1992;267:9331–9339.

    PubMed  CAS  Google Scholar 

  26. Mattei M, Sardet C, Franchi A, Pouyssegur J. The human amiloride-sensitive Na*/H* antiporter is localized to chromosome 1 by in situ hybridization. Cytogenet Cell Genet 1988;48:6–8.

    Article  PubMed  CAS  Google Scholar 

  27. Kolyada A, Madias N. Proximal regulatory elements and nuclear activities for transcription of the human Na*/H+ exchanger (NHE-1) gene. Biochem Biophys Acta 1994;1217:54–64.

    Article  PubMed  CAS  Google Scholar 

  28. Kolyada A, Madias N. Transcriptional regulation of the human Na*/H* exchanger (NHE-1) gene. In: DeSanto NG, Campaso G, eds. Acid-Base and Electrolyte Balance. Molecular, Cellular, and Clinical Aspects. Instituto Italiano per gli Studi Filosofici, Naples, Italy, 1995, pp. 19–28.

    Google Scholar 

  29. Szpirer C, Szpirer J, Riviere M, Levan G, Orlowski J. Chromosomal assignment of four genes encoding Na/H exchanger isoforms in human and rat. Mammalian Genome 1994;5:153–159.

    Article  PubMed  CAS  Google Scholar 

  30. Fafournoux P, Noel J, Pouyssegur J. Evidence that Na*/H+exchanger isoforms NHE1 and NHE3 exist as stable dimers in membranes with a high degree of specificity for homodimers. J Biol Chem 1994;269:2589–2596.

    PubMed  CAS  Google Scholar 

  31. Counillon L, Pouyssegur J. Structure-function studies and molecular regulation of the growth factor activatable sodium-hydrogen exchanger (NHE-1). Cardiovasc Res 1995;29:147–154.

    PubMed  CAS  Google Scholar 

  32. Brock T, Lewis L, Smith J. Angiotensin increasesNa*entry and Na*/K* transport in cultures of smooth muscle from rat aorta. Proc Natl Acad Sci USA 1982;79:1438–1442.

    Article  PubMed  CAS  Google Scholar 

  33. Smith J, Brock T. Analysis of angiotensin-stimulated sodium transport in cultured smooth muscle cells from rat aorta. J Cell Physiol 1983;114:284–290.

    Article  PubMed  CAS  Google Scholar 

  34. Owen N. Platelet-derived growth factor stimulatesNa* influx in VSMCs. Am J Physiol 1984;247: C501–0505.

    PubMed  CAS  Google Scholar 

  35. Little PJ, Edward J, Cragoe J, Bobik A. Na-H exchange is a major pathway for Na influx in rat vascular smooth muscle. Am J Physiol I986;251:C707–C712.

    PubMed  CAS  Google Scholar 

  36. Bobik A, Grooms A, Little P, Cragoe E, Grinpukel S. Ethylisopropyl-amiloride-sensitive pH control mechanisms modulate VSMC growth. Am J Physiol 1991;255:C581–C588.

    Google Scholar 

  37. Weissberg P, Little P, Cragoe E, Bobik A. Na-H antiport in cultured rat aortic smooth muscle: its role in cytoplasmic pH regulation. Am J Physiol 1987;253:C193–C198.

    PubMed  CAS  Google Scholar 

  38. LaPointe MS, Batlle DC. Na-dependent, HCO3-dependent acid extrusion in vascular smooth muscle. Clin Res 1991;39:362A (abstract).

    Google Scholar 

  39. LaPointe M, Ye M, Moe O, Alpern R, Batlle D. Na*/H+antiporter (NHE-1 isoform) in cultured vascular smooth muscle from the spontaneously hypertensive rat. Kidney Intern 1995;47:78–87.

    Article  CAS  Google Scholar 

  40. Moolenaar W, Tertoolen L, de Laat S. Na*/Hr exchange and cytosolic pH in the action of growth factors in human fibroblasts. Nature 1983;304:645–648.

    Article  PubMed  CAS  Google Scholar 

  41. Moolenaar W, Tertoolen L, de Last S. The regulation of cytoplasmic pH in human fibroblasts. J Biol Chem 1984;259:7563–7569.

    PubMed  CAS  Google Scholar 

  42. LaPointe M, Batlle D. Control of steady state intracellular pH (pHi) in VSMCs (vsmc). Am J Hypertens 1989;2:69A.

    Google Scholar 

  43. Rao G, Sardet C, PouyssÄgur J, Berk B. Differential regulation of Na*/H* antiporter gene expression in VSMCs by hypertrophic and hyperplastic stimuli. J Biol Chem 1990;265:19,393–19,396.

    PubMed  CAS  Google Scholar 

  44. Lucchesi PA, DeRoux N, Berk BC. Na(+)-H* exchanger expression in vascular smooth muscle of spontaneously hypertensive and Wistar-Kyoto rats. Hypertension 1994;24:734–738.

    Article  PubMed  CAS  Google Scholar 

  45. Balkovetz D, Wang D, Warnock D. The cytosolic tail influences H*-affinity and maximal velocity of the human Na*/H+ exchanger (NHE-1). J Am Soc Nephrol 1994;5:265.

    Google Scholar 

  46. Otsu K, Kinesella J, Sacktor B, Froelich J. Transient state kinetic evidence for an oligomer in the mechanism of Na-H+ exchange. Proc Natl Acad Sci USA 1989;86:4818–4822.

    Article  PubMed  CAS  Google Scholar 

  47. Otsu K, Kinesella J, Heller P, Froelich J. Sodium dependence of the Na(+)-W exchanger in the pre-steady state. Implications for the exchange mechanism. J Biol Chem 1993;268:3184–3193.

    PubMed  CAS  Google Scholar 

  48. Clark J, Limbird L. Na(+) -H* exchanger subtypes: a predictive review. Am J Physiol 1991;261: C945–C953.

    PubMed  CAS  Google Scholar 

  49. Counillon L, Franchi A, Pouyssegur J. A point mutation of the Na*/H+exchange gene (NHE-1) and amplification of the mutated allele confer amiloride resistance upon chronic acidosis. Proc Natl Acad Sci USA 1993;90:4508–4512.

    Article  PubMed  CAS  Google Scholar 

  50. Goss G, WoodsideM, Wakabayashi S, Pouyssegur J, Waddell T, Downey G, Grinstein S. ATP dependence of NHE-1, the ubiquitous isoform of the Na*/H+ antiporter. J Biol Chem 1994;269:8741–8748.

    PubMed  CAS  Google Scholar 

  51. Grinstein S, Rothstein A. Mechanisms of regulation of the Na*/H+ exchanger. J Mem Biol 1986;90:1–12.

    Article  CAS  Google Scholar 

  52. Sardet C, Counillon L, Franchi A, PouyssAgur J. Growth factors induce phosphorylation of the Na+/+ antiporter, glycoprotein of 110 kD. Science 1990;247:723–726.

    Article  PubMed  CAS  Google Scholar 

  53. Sardet C, Fafournoux P, PouyssAgur J. A-thrombin, EGF and okadaic acid activate the Na+/+ exchanger, NHE-1, by phosphorylating a set of common sites. J Biol Chem 1991;266:1916–1917.

    Google Scholar 

  54. Wakabayashi S, Bertrand B, Shigekawa M, Fafournoux P, Pouyssegur J. Growth factor activation and “H(+)-sensing” of the Na*/H* exchanger isoform 1(NHE 1). Evidence for an additional mechanism not requiring direct phosphorylation. J Biol Chem 1994;269:5583–5588.

    PubMed  CAS  Google Scholar 

  55. Bertrand B, Wakabayashi S, Ikeda T, Pouyssegur J, Shigekawa M. The Na+/H+exchanger isoform 1 (NHE1) is a novel member of the calmodulin-binding proteins. Identification and characterization of calmodulin-binding sites. J Biol Chem 1994;269:13,703–13,709.

    PubMed  CAS  Google Scholar 

  56. Wakabayashi S, Bertrand B, Ikeda T, Pouyssegur J, Shigekawa M. Mutation of calmodulin-binding site renders the Na*/H+ exchanger (NHE1) highly H(+)-sensitive and Caz+ regulation-defective. J Biol Chem 1994;269:13,710–13,715.

    PubMed  CAS  Google Scholar 

  57. Aronson P. Kinetic properties of the plasma membrane Na+ H+ exchanger. Annu Rev Physiol 1985;47:545–560.

    Article  PubMed  CAS  Google Scholar 

  58. Saleh A, Batlle D. Kinetic properties of the Na+/H+ antiporter of lympocytes from the spontaneously hypertensive rat. J Clin Invest 1990;85:1734–1739.

    Article  PubMed  CAS  Google Scholar 

  59. Berk BC, Aronow MS, Brock TA, Edward Cragoe J, Michael A, Gimbrone J, Alexander RW. Angiotensin II-stimulated Na+/H+exchanger in cultured VSMCs. J Biol Chem 1987;262:5057–5064.

    PubMed  CAS  Google Scholar 

  60. Lucchesi PA, Berk BC. Regulation of sodium-hydrogen exchange in vascular smooth muscle. Cardiovasc Res 1995;29:172–177.

    PubMed  CAS  Google Scholar 

  61. Batlle D, Redon J, Gutterman C, LaPointe M, Saleh A, Rombola G, Ye M, Gomez L, Sobrero M. Acid-base status and intracellular pH regulation in lymphocytes from rats with genetic hypertension. J Am Soc Nephrol 1994;5: S6–S11.

    Google Scholar 

  62. LaPointe M, Bacallao R, Batlle D. Differential expression of the NHE-1 isoform of the Na*/H+antiporter in lymphocytes and cultured VSMCs from the spontaneously hypertensive rat. J Am Soc Nephrol 1994;5:543.

    Google Scholar 

  63. Moolenaar W, Boonstra J, van der Saag P, de Laat S. Sodium/proton exchange in mouse neuroblastoma cells. J Biol Chem 1981;256:12,883–12,887.

    PubMed  CAS  Google Scholar 

  64. Moolenaar W, Mummery C, van der Saag P, de Laat S. Rapid ionic events and the initiation of growth in serum-stimulated neuroblastoma cells. Cell 1982;23:789–798.

    Article  Google Scholar 

  65. Moolenaar W, Tertoolen L, de Laat S. Phorbol ester and diacylglycerol mimic growth factors in raising cytoplasmic pH. Nature 1984;312:371–374.

    Article  PubMed  CAS  Google Scholar 

  66. Okada K, Ishikawa S, Saito T. Mechanisms of vasopressin-induced increase in intracellular Na+ in VSMCs. Am J Physiol 1991;261:F1007–F1011.

    PubMed  CAS  Google Scholar 

  67. Kikeri D, Zeidel M, Ballermann B, Brenner B, Hebert S. pH regulation and response to AVP in A10 cells differ markedly in the presence vs. absence of CO2-HCO3. Am J Physiol 1990;259:C471–C483.

    PubMed  CAS  Google Scholar 

  68. Ganz M, Boyarsky G, Boron W, Sterzel R. Effects of angiotensin II and vasopressin on intracellular pH of glomerular mesangial cells. Am J Physiol 1988;254:F787–F794.

    PubMed  CAS  Google Scholar 

  69. Ye M, Flores G, Batlle D. Angiotensin II and angiotensin 1–7 effects on free cytosolic sodium and intracellular pH and the Na+/H+ antiporter in vascular smooth muscle. Hypertension 1996;27:72–78.

    Article  PubMed  CAS  Google Scholar 

  70. Johnson E, Theler J, Capponi A, Vallotton M. Characterization of oscillations in cytosolic free Caz+concentration and measurement of cytosolic Na+ concentration changes evoked by angiotensin II and vasopressin in individual rat aortic smooth muscle cells. Use of microfluorometry and digital imaging. J Biol Chem 1991;266:12,618–12,626.

    PubMed  CAS  Google Scholar 

  71. Mene P, Dubyak G, Scarpa A, Dunn M. Regulation of cytosolic pH of cultured mesangial cells by prostaglandin F2 alpha and thromboxane A2. Am J Physiol 1991;260:C159–C166.

    PubMed  CAS  Google Scholar 

  72. Paris S, PouyssAgur J. Growth factors activate the Na*-H* antiporter in quiescent fibroblasts by increasing its affinity for intracellular H+. J Biol Chem 1984;259:10,989–10,994.

    PubMed  CAS  Google Scholar 

  73. Vallega G, Canessa M, Berk B, Brock T, Alexander W. Vascular smooth muscle Na*-H+ exchanger kinetics and its activation by angiotensin II. Am J Physiol 1988;254: C751–C758.

    PubMed  CAS  Google Scholar 

  74. Krug L, Berk B. Na*,K+-adenosine triphosphate regulation in hypertrophied VSMCs. Hypertension 1992;20:138–143.

    Article  Google Scholar 

  75. Hatori N, Fine B, Nakamura A, Cragoe E, Aviv A. Angiotensin II effect on cytosolic pH in cultured VSMCs. J Biol Chem 1987;262:5073–5078.

    PubMed  CAS  Google Scholar 

  76. Taubman M, Berk B, Izumo S, Tsuda T, Alexander R, Nadal-Ginard B. Angiotensin II induces c-fos mRNA in aortic smooth muscle. Role of Caz+mobilization and PKC activation. J Biol Chem 1989;264:526–530.

    PubMed  CAS  Google Scholar 

  77. Lyall F, Morton JJ, Lever AF, Cragoe EJ. Angiotensin II activates Na*-H* exchange and stimulates growth in cultured VSMCs. J Hypertens 1988;6:S438–S441.

    CAS  Google Scholar 

  78. Geisterfer AA, Peach MJ, Owens GK. Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res 1988;62:749–756.

    Article  PubMed  CAS  Google Scholar 

  79. Campbell-Boswell M, Robertson AL, Jr. Effects of angiotensin II and vasopressin on human smooth muscle cells in vitro. Exp Mol Pathol 1981;35:265–276.

    Article  PubMed  CAS  Google Scholar 

  80. Weber H, Taylor DS, Molloy CJ. Angiotensin II induces delayed mitogenesis and cellular proliferation in rat aortic smooth muscle cells. Correlation with the expression of specific endogenous growth factors and reversal by suramin. J Clin Invest 1994;93:788–798.

    Article  PubMed  CAS  Google Scholar 

  81. Boyarsky G, Ganz M, Sterzel R, Boron W. pH regulation in single glomerular mesangial cells II. Na-dependent and -independent Cr-HCO3 -exchangers. Am J Physiol: Cell 1988;255:C857–C869.

    CAS  Google Scholar 

  82. Boyarsky G, Ganz M, Sterzel R, Boron W. pH regulation in single glomerular mesangial cells I. Acid extrusion in absence and presence of HCO3-. Am J Physiol: Cell 1988;255:C844–C856.

    CAS  Google Scholar 

  83. Korbmacher C, Helbig H, Stahl F, Wiederholt M. Evidence forNa/H exchange and Cr/HCO3 exchange in Al0 VSMCs. Pflugers Arch 1988;412:29–36.

    PubMed  CAS  Google Scholar 

  84. Vigne P, Breittmayer J, Frelin C, Lazdunski M. Dual control of the intracellular pH in aortic smooth muscle cells by a cAMP-sensitive HCO3/Cr antiporter and a protein kinase c-sensitive Na+/+antiporter. J Biol Chem 1988;263:18,023–18,029.

    PubMed  CAS  Google Scholar 

  85. Drenckhahn D, Zinke K, Schauer U, Appell K, Low P. Identification of immunoreactive forms of human erythrocyte band 3 in nonerythroid cells. Eur J Cell Biol 1984;34:144–150.

    PubMed  CAS  Google Scholar 

  86. Alper SL. The band 3-related anion exchanger (AE) gene family. Annu Rev Physiol 1991;53:549–564.

    Article  PubMed  CAS  Google Scholar 

  87. Kopito RR. Molecular biology of the anion exchanger gene family. Intern Rev Cytol 1990;123:177–199.

    Article  CAS  Google Scholar 

  88. Kopito R, HF L. Primary structure and transmembrane orientation of the murine anion exchange protein. Nature 1985;316:234–238.

    Article  PubMed  CAS  Google Scholar 

  89. Boron W. Intracellular pH regulation in epithelial cells. Annu Rev Physiol 1986;48:377–388.

    Article  PubMed  CAS  Google Scholar 

  90. Putnam R. pH regulatory transport systems in a smooth muscle-like cell line. Am J Physiol 1990;258:C470–0479.

    PubMed  CAS  Google Scholar 

  91. Neylon CB, Little PJ, Cragoe EJ Jr, Bobik A. Intracellular pH in Human Arterial Smooth Muscle. Circ Res 1990;67:814–825.

    Article  PubMed  CAS  Google Scholar 

  92. Little PJ, Neylon CB, Farrelly CA, Weissberg PL, Cragoe EJ, Jr, Bobik A. Intracellular pH in vascular smooth muscle: regulation by sodium-hydrogen exchange and multiple sodium dependent HCO3 mechanisms. Cardiovasc Res 1995;29:239–246.

    PubMed  CAS  Google Scholar 

  93. LaPointe M, Batlle D. A NEM-sensitive, ATP dependent mechanism of Na-independent intracellular pH regulation in VSMCs (VSMC). J Am Soc Nephrol 1990;1:474.

    Google Scholar 

  94. McCabe RD, Young DB. Evidence of K(+)-H(+)-ATPase in VSMCs. Am J Physiol 1992;262:H1955-H 1958.

    PubMed  CAS  Google Scholar 

  95. Flores G, Ye M, LaPointe M, Batlle D. Ionic effects of angiotensin II and their role in the activation of the Na+/H+ antiporter. Kidney Int 1996;49(Suppl. 55), in press.

    Google Scholar 

  96. Ganz M, Boyarsky G, Sterzel R, Boron W. Arginine vasopressin enhances pHiregulation in the presence of HCO3 by stimulating three acid-base transport systems. Nature 1989;337:648–651.

    Article  PubMed  CAS  Google Scholar 

  97. Daugirdas JT, Arrieta J, Ye M, Flores G, Batlle D. Intracellular acidification associated with changes in free cytosolic calcium. J Clin Invest 1995;95:1480–1489.

    Article  PubMed  CAS  Google Scholar 

  98. Siskind M, McCoy C, Chobanian A, Schwartz J. Regulation of intracellular calcium by cell pH in VSMCs. Am J Physiol 1989;256:C234–C240.

    PubMed  CAS  Google Scholar 

  99. Putnam R, DouglassP.Effect of changes of pHion intracellular calcium in a smooth muscle-like cell line. Mol Cell Biochem 1990;99:89–95.

    Article  PubMed  CAS  Google Scholar 

  100. Batlle DC, Peces R, LaPointe MS, Ye M, Daugirdas JT. Cytosolic free calcium regulation in response to acute changes in intracellular pH in vascular smooth muscle. Am J Physiol 1993;264:C932–C943.

    PubMed  CAS  Google Scholar 

  101. Batlle D, Godinich M, LaPointe M, Munoz E, Carone F, Mehring N. Extracellular Na+ dependency of free cytosolic Cat+ regulation in aortic VSMCs. Am J Physiol 1991;261:C845–C856.

    PubMed  CAS  Google Scholar 

  102. Dunnett J, Nayler W. Effect of pH on calcium accumulation and release by isolated fragments of cardiac and skeletal muscle sarcoplasmic reticulum. Arch Biochem Biophys 1979;198:434–438.

    Article  PubMed  CAS  Google Scholar 

  103. Fabiato A, Fabiato F. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J Physiol (Lond) 1978;276:233–255.

    CAS  Google Scholar 

  104. Iino S, Hayashi H, Saito H, Tokuno H, Tomita T. Effects of intracellular pH on calcium currents and intracellular calcium ions in the smooth muscle of rabbit portal vein. Exp Physiol 1994;79:669–680.

    PubMed  CAS  Google Scholar 

  105. Root MJ, Mackinnon R. Two identical noninteracting sites in an ion channel revealed by proton transfer. Science 1994;265:1852–1856.

    Article  PubMed  CAS  Google Scholar 

  106. Godinich M, LaPointe M, Batlle D. Free cytosolic calcium regulation via Na+/Ca2+ exchange in VSMCs. Ann NY Acad Sci 1991;639:561–565.

    Article  PubMed  CAS  Google Scholar 

  107. Smith J. Angiotensin-receptor signalling in cultured VSMCs. Am J Physiol 1986;250:F759–F769.

    PubMed  CAS  Google Scholar 

  108. Smith J, Smith L. Extracellular Na+ dependence of changes in free Cat*, 45Ca2+ efflux, and total cell Ca2+ produced by angiotensin II in cultured arterial muscle cells. J Biol Chem 1987;262:17,455–17,460.

    PubMed  CAS  Google Scholar 

  109. Nabel E, Berk B, Brock T, TW S. Na+- Ca2+ exchange in cultured VSMCs. Circ Res 1988;62:486–493.

    Article  PubMed  CAS  Google Scholar 

  110. Brass L, Joseph S. A role for inositol triphosphate in intracellular Ca2+ mobilization and granule secretion in platelets. J Biol Chem 1985;260:15,172–15,179.

    PubMed  Google Scholar 

  111. Missiaen L, Taylor C, Berridge M. Spontaneous calcium release from inositol triphosphate sensitive calcium stores. Nature 1991;352:241–244.

    Article  PubMed  CAS  Google Scholar 

  112. Snyder S, Suppatapone S. Isolation and functional characterization of an inositol triphosphate receptor from brain. Cell Calcium 1989;10:337–342.

    Article  PubMed  CAS  Google Scholar 

  113. Schulz I, Thevenod F, Dehlinger-Kremer M. Modulation of intracellular free Ca2+concentration by IP3-sensitive and IP3-insensitive nonmitochondrial Cat+pools. Cell Calcium 1989;10:325–336.

    Article  PubMed  CAS  Google Scholar 

  114. Smith J, Dwyer S, Smith L. Decreasing extracellularNa+ concentration triggers inositol polyphosphate production and Cat+ mobilization. J Biol Chem 1989;264:831–837.

    PubMed  CAS  Google Scholar 

  115. Cobbold P, Rink T. Fluorescence and bioluminescence measurement of cytoplasmic free calcium. Biochem J 1987;248:313–328.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

LaPointe, M.S., Batlle, D. (1996). Regulation of Intracellular pH and the Na+/H+ Antiporter in Vascular Smooth Muscle. In: Sowers, J.R. (eds) Endocrinology of the Vasculature. Contemporary Endocrinology, vol 1. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0231-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0231-8_22

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6672-3

  • Online ISBN: 978-1-4612-0231-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics