Skip to main content

Ionic Mechanisms of Peptide-Induced Responses in Vascular Endothelial Cells

  • Chapter
Endocrinology of the Vasculature

Part of the book series: Contemporary Endocrinology ((COE,volume 1))

Abstract

The single layer of endothelial cells (ECs) that lines the luminal side of blood vessels plays an important role in regulating blood vessel function. Underlying the EC layer are several layers of vascular smooth muscle cells (VSMC) (Fig. 1). Although the EC layer serves in part as a protective covering and permeability barrier to the movement of substances through the blood vessel wall, ECs also have an active role in mediating the effect of hormonal and locally produced substances that regulate VSMC tension and growth. There is evidence that relaxation or decreases in blood vessel contractility caused by steroid hormones (1), acetyl choline(2 3)and various peptides (described in Peptides and Vascular Responses) are mediated by the EC layer and do not occur in blood vessels in which the endothelial cell layer has been removed. There is a large body of evidence that shows that ECs release substances that cause blood vessels to dilate(2-5). A major component of these endothelium-derived relaxing factors is nitric oxide (NO), the syn

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell DR, Rensberger HJ, Kortnik DR, Koshy A. Estrogen pretreatment directly potentiates endothe-lium-dependent vasorelaxation of porcine coronary arteries. Am J Physiol 1995;268:H377–H383.

    CAS  PubMed  Google Scholar 

  2. Furchgott RF. Role of endothelium in responses of vascular smooth muscle. Circulation Res 1984;53:557–573.

    Article  Google Scholar 

  3. Furchgott RF. Studies on relaxation of rabbit aorta by sodium nitrite: the basis for the proposal that the acid-activatable inhibitory factor from bovine retractor penis is inorganic nitrite and the endothelium-derived relaxing factor is nitric oxide. In: Vanhoutte, PM, ed. Vasodilatation: Vascular Smooth Muscle, Peptides, Autonomic Nerves and Endothelium. Raven, New York, 1988, pp. 401–414.

    Google Scholar 

  4. Vanhoutte PM, Rubanyi GM, Miller VM, Houston DS. Modulation of vascular smooth muscle contraction by endothelium. Annu Rev Physiol 1986;48:307–320.

    Article  CAS  PubMed  Google Scholar 

  5. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chadhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 1987;84:9265–9269.

    Article  CAS  PubMed  Google Scholar 

  6. Cherry PD, Furchgott RF, Zawadski JV, Jonathidian D. Role of endothelial cells in relaxations of isolated arteries to bradykinin. Proc Natl Acad Sci USA 1982;79:2106–2110.

    Article  CAS  PubMed  Google Scholar 

  7. Linz W, Wiemer G, Gohlke P, Unger T, Scholkens BA. Contribution of kinins to the cardiovascular actions of angiotensin-converting enzyme inhibitors. Pharm Rev 1995;47:25–49.

    CAS  PubMed  Google Scholar 

  8. Regoli D, Barabé J. Pharmacology of bradykinin and related kinins. Pharm Rev 1980;32:1–46.

    CAS  PubMed  Google Scholar 

  9. Vanhoutte PM, Boulanger CM, Illiano SC, Nagao T, Vidal M, Mombouli J-V. Endothelium-dependent effects of converting-enzyme inhibitors. J Cardiovasc Pharmacol 1993;22(Suppl. 5):S10–S16.

    Article  CAS  Google Scholar 

  10. Schini VB, Boulanger C, Regoli D, Vanhoutte PM. Bradykinin stimulates the production of cyclic GMP via activation of B2-kinin receptors in cultured porcine aortic endothelial cells. J Pharmacol Exp Ther 1990;252:581–585.

    CAS  PubMed  Google Scholar 

  11. Regoli D, Jukic D, Gobeil F, Rhaleb N-E. Receptors for bradykinin and related kinins: a critical analysis. Can J Physiol Pharmacol 1993;71:556–567.

    Article  CAS  Google Scholar 

  12. Cockcroft JR, Chowienczyk PJ, Brett SE, Bender N, Ritter JM. Inhibition of bradykinin-induced vasodilation in human forearm vasculature by icatibant, a potent B2-receptor antagonist. Br J Clin Pharmacol 1994; 3 8:317–321.

    Article  Google Scholar 

  13. Wiemer G, Popp R, Schölkens BA, Gogelein H. Enhancement of cytosolic calcium, prostacyclin and nitric oxide by bradykinin and the ACE inhibitor ramiprilat in porcine brain capillary endothelial cells. Brain Res 1994;638:261–266.

    Article  CAS  PubMed  Google Scholar 

  14. Hess JF, Borkowski JA, Young GS, Strader CD, Ransom RW. Cloning and pharmacological characterization of a bradykinin (BK-2) receptor. Biochem Biophys Res Commun 1992;184:260–268.

    Article  CAS  PubMed  Google Scholar 

  15. McEachem AE, Shelton ER, Bhakta S, Obemolte R, Bach C, Zuppan P, Fujisaki J, Aldrich RW, Jamagin K. Expression cloning of a ratB2bradykinin receptor. Proc Natl Acad Sci USA 1991;88:7724–7728.

    Article  Google Scholar 

  16. Pesquero JB, Jubilut GN, Lindsey CJ, Paiva ACM. Bradykinin metabolism pathway in the rat pulmonary circulation. J Hypertens 1992;10:1471–1478.

    Article  CAS  PubMed  Google Scholar 

  17. Ryan JW. Processing of the endogenous polypeptides by the lungs. Annu Rev Physiol 1982;44:241–255.

    Article  CAS  PubMed  Google Scholar 

  18. McCarthy DA, Potter DE, Nicolaides ED. An in vivo estimation of the potencies and half-lives of synthetic bradykinin and kallidin. J Pharmacol Exp Ther 1965;148:117–122.

    CAS  PubMed  Google Scholar 

  19. Hasan AA, Cines DB, Ngaiza JR, Jaffe EA, Schmaier AH. High-molecular-weight kininogen is exclusively membrane bound on endothelial cells to influence activation of vascular endothelium. Blood 1995;85:3134–3143.

    CAS  PubMed  Google Scholar 

  20. Mombouli JV, Vanhoutte PM Kinins mediate kallikrein-induced endothelium-dependent relaxations in isolated canine coronary arteries. Biochem Biophys Res Commun 1992;185:693–697.

    Article  CAS  PubMed  Google Scholar 

  21. Wiemer G, Schölkens BA, Linz W. Endothelial protection by converting enzyme inhibitors. Cardiovasc Res 1994;28:166–172.

    Article  CAS  PubMed  Google Scholar 

  22. Mombouli JV, Vanhoutte PM. Kinins and endothelium-dependent relaxations to converting enzyme inhibitors in perfused canine arteries. J Cardiovasc Pharmacol 1991;18:926–927.

    Article  CAS  PubMed  Google Scholar 

  23. Hashimoto K, Hamamoto H, Honda Y, Hirose M, Furukawa S, Kumura E. Changes in components of kinin system and hemodynamics in acute myocardial infarction. Am Heart J 1978;95:619–626.

    Article  CAS  PubMed  Google Scholar 

  24. Linz W, Wiemer G, Schölkens BA. Contribution ofbradykinin to the cardiovascular effects oframipril. J Cardiovasc Pharmacol 1993;22(Suppl. 9): S1–S8.

    CAS  PubMed  Google Scholar 

  25. Xu J, Qu ZX, Moore SA, Hsu CY, Hogan EL. Receptor-linked hydrolysis of phosphoinositides and production of prostacyclin in cerebral endothelial cells. J Neurochem 1992;58:1930–1935.

    Article  CAS  PubMed  Google Scholar 

  26. Hecker M, Bara T, Busse R. Relaxation of isolated coronary arteries by angiotensin-converting enzyme inhibitors: role of endothelium-derived kinins. J Vasc Res 1993;30:257–262.

    Article  CAS  PubMed  Google Scholar 

  27. Katusic ZS, Milde JH, Cosentino F, Mitrovic BS. Subarachnoid hemorrhage and endothelial L-arginine pathway in small brain stem arteries in dogs. Stroke 1993;24:392–399.

    Article  CAS  PubMed  Google Scholar 

  28. Briner VA, Tsai P, Schrier RW. Bradykinin: potential for vascular constriction in the presence of endothelial injury. Am J Physiol 1993;264:F322 F327.

    PubMed  Google Scholar 

  29. Hawley J, Rubin PC, Hill SJ. Distribution of receptors mediating phosphoinositide hydrolysis in cultured human umbilical artery smooth muscle and endothelial cells. Biochem Pharmacol 1995;49:1005–1011.

    Article  CAS  PubMed  Google Scholar 

  30. Nakanishi S. Substance P precursor and kininogen: their structures, gene organizations, and regulation. Physiol Rev 1987;67:1117–1142.

    CAS  PubMed  Google Scholar 

  31. Cascieri MA, Huang R-RC, Fong TM, Cheung AH, Sadowski S, Ber E, Strader CD. Determination of the amino acid residues in substance P conferring selectivity and specificity for the rat neurokinin receptors. Mol Pharm 1992;41:1096–1099.

    CAS  Google Scholar 

  32. Olesen IJ, Gulbenkian S, Valença A, Antunes JL, Wharton J, Polak JM, Edvinsson L. The peptidergic innervation of the human superficial temporal artery: immunohistochemistry, ultrastructure, and vasomotility. Peptides 1995;16:275–287.

    Article  CAS  PubMed  Google Scholar 

  33. Stones RW, Loesch A, Beard RW, Burstock G. Substance P: endothelial localization and pharmacology in the human ovarian vein. Obstet Gynecol 1995;85:273–278.

    Article  CAS  PubMed  Google Scholar 

  34. Gulbenkian S, Opgaard OS, Barroso CP, Wharton J, Polak JM, Edvinsson L. The innervation of guinea pig epicardial coronary veins: immunohistochemistry, ultrastructure and vasomotility. J Auton Nerv Syst 1994;47:201–212.

    Article  CAS  PubMed  Google Scholar 

  35. Gulbenkian S, Edvinsson L, Opgaard OS, Wharton J, Polak JM, David-Ferreira JF. Peptide-containing nerve fibres in guinea-pig coronary arteries: immunohistochemistry, ultrastructure, and vasomotility. J Auton New Syst 1990;31:153–168.

    Article  CAS  Google Scholar 

  36. Cuello AC, Polak JM, Pearse AGE. Substance P: a naturally occurring transmitter in human spinal cord. Lancet 1976;11:1054–1056.

    Article  Google Scholar 

  37. Lembeck F, Holzer P. Substance P as neurogenic mediator of antidromic vasodilation and neurogenic plasma extravasation. Naunyn-Schmiedeberg’s Arch Pharmacol 1979;310:175–183.

    Article  CAS  Google Scholar 

  38. Dikranian K, Loesch A, Bumstock G. Localization of nitric oxide synthase and its colocalization with vasoactive peptides in coronary and femoral arteries. An electron microscope study. J Anat 1994;184:583–590.

    CAS  PubMed  Google Scholar 

  39. Gerard NP, Garraway LA, Eddy RL Jr, Shows TB, Iijima H, Paquet JL, Gerard C. Human Substance P receptor (NK-1): organization of the gene, chromosome localization, and functional expression of cDNA clones. Biochemistry 1991;30:640–646.

    Google Scholar 

  40. Takeda Y, Chou KB, Takeda J, Sachais BS, Krause JE. Molecular cloning, structural characterization and functional expression of the human Substance P receptor. Biochem Biophys Res Commun 1991;179:1232–1240.

    Article  CAS  PubMed  Google Scholar 

  41. Chester AH, O’Neil GS, Tadjkarimi S, Palmer RM, Moncada S, Yacoub MH. The role of nitric oxide in mediating endothelium dependent relaxations in the human epicardial coronary artery. Int J Cardiol 1990;29:305–309.

    Article  CAS  PubMed  Google Scholar 

  42. Von der Weid PY, Beny JL. Effect of Caz+ ionophores on membrane potential of pig coronary artery endothelial cells. Am J Physiol 1992;262:H1823–H1831.

    PubMed  Google Scholar 

  43. Cowley AW, Switzer SJ, Guinn MM. Evidence and quantification of the vasopressin arterial pressure control system in the dog. Circ Res 1980;46:58–67.

    Article  CAS  PubMed  Google Scholar 

  44. Rap ZM, Chwalbinska-Moneta J. Vasopressin concentration in the blood during acute short-term intracranial hypertension in cats. Adv Neurol 1978;20:381–388.

    CAS  PubMed  Google Scholar 

  45. Wang BC, Share L, Guyton JT, Kumura T. Changes in vasopressin concentration in pressure and cerebrospinal fluid in response to hemorrhage in anesthetized dogs. Neuroendocrinology 1981;33:61–66.

    Article  PubMed  Google Scholar 

  46. Wilson MF, Brackett DJ, Hinshow LB, Tompkins P, Archer LT, Benjamin BA. Vasopressin release during sepsis and septic shock in baboons and dogs. Surg Gynecol Obstet 1981;153:869–872.

    CAS  PubMed  Google Scholar 

  47. Stallone JN. Role of endothelium in sexual dimorphism in vasopressin-induced contraction of rat aorta. Am J Physiol 1993;265:H2073–H2080.

    CAS  PubMed  Google Scholar 

  48. Cosentino F, Sill JC, Katusic ZS. Endothelial L-arginine pathway and relaxations to vasopressin in canine basilar artery. Am J Physiol 1993;264:H413–H418.

    CAS  PubMed  Google Scholar 

  49. Evora PR, Pearson PJ, Schaff HV. Arginine vasopressin induces endothelium-dependent vasodilatation of the pulmonary artery. VI -receptor-mediated production of nitric oxide. Chest 1993;103:1241–1245.

    Article  CAS  PubMed  Google Scholar 

  50. Simon JS, Brody MJ, Kasson BG. Characterization of a vasopressin-like peptide in rat and bovine blood vessels. Am J Physiol 1992;262:H799–H804.

    CAS  PubMed  Google Scholar 

  51. Loesch A, Tomlinson A, Burnstock G. Localization of arginine vasopressin in endothelial cells of rat pulmonary artery. Anat Embryol 1991;183:129–134.

    Article  CAS  PubMed  Google Scholar 

  52. Cai WQ, Bodin P, Loesch A, Sexton A, Burnstock G. Endothelium of human umbilical blood vessels: ultrastructural immunolocalization of neuropeptides. J Vasc Res 1993;30:340–355.

    Article  Google Scholar 

  53. Loesch A, Bodin P, Burnstock G. Colocalization of endothelin, vasopressin, and serotonin in cultured endothelial cells of rabbit aorta. Peptides 1991;12:1095–1103.

    Article  CAS  PubMed  Google Scholar 

  54. Katusic ZS. Endothelial L-arginine pathway and regional cerebral reactivity to vasopressin. Am J Physiol 1992;262:H1557–H1563.

    CAS  PubMed  Google Scholar 

  55. Ostrowski NL, Lolait SJ, Young WS 3rd. Cellular localization of vasopressin V 1 a receptor messenger ribonucleic acid in adult male rat brain, pineal, and brain vasculature. Endocrinology 1994;135:1511–1528.

    Article  CAS  PubMed  Google Scholar 

  56. Emori T, Hirata Y, Ohta K, Kanno K, Eguchi S, Imai T, Shichiri M, Marumo F. Cellular mechanism of endothelin-1 release by angiotensin and vasopressin. Hypertension 1991;18:165–170.

    Article  CAS  PubMed  Google Scholar 

  57. Martinez MC, Vila JM, Aldasoro M, Medina P, Flor B, Lluch S. Relaxation of human isolated mesenteric arteries by vasopressin and desmopressin. Br J Pharmacol 1994;113:419–424.

    Article  CAS  PubMed  Google Scholar 

  58. Thien-Khai HV, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 1991;64:1057–1068.

    Article  Google Scholar 

  59. Tesfamariam B, Allen GT, Norman-Din D, Antonaccio MJ. Involvement of the “tethered ligand” receptor in thrombin-induced endothelium-mediated relaxations. Am J Physiol 1993;265:H1744–H1749.

    CAS  PubMed  Google Scholar 

  60. Glusa E, Paintz M. Relaxant and contractile responses of porcine pulmonary arteries to a thrombin receptor activating peptide (TRAP). Naunyn-Schmiedeberg’s Arch Pharm 1994;349:431–436.

    CAS  Google Scholar 

  61. Kruse H-J, Mayerhofer C, Siess W, Weber PC. Thrombin receptor-activating peptide sensitizes the human endothelial thrombin receptor. Am J Physiol 1995;268:C36–C44.

    CAS  PubMed  Google Scholar 

  62. Kruse HJ, Negrescu EV, Weber PC, Siess W. Thrombin-induced Ca’ influx and protein tyrosine phosphorylation in endothelial cells is inhibited by herbimycin A. Biochem Biophys Res Comm 1994;202: I651–1656.

    Article  Google Scholar 

  63. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide-physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43:109–142.

    CAS  PubMed  Google Scholar 

  64. Singer HA, Peach MJ. Calcium and endothelial-mediated vascular smooth muscle relaxation in rabbit aorta. Hypertension 1982;4(Suppl. 2):19–25.

    CAS  PubMed  Google Scholar 

  65. Long CJ, Stone TW. The release of endothelium-derived relaxant factor is calcium dependent. Blood Vessels 1985;22:205–208.

    CAS  PubMed  Google Scholar 

  66. Luckhoff A, Busse R. Increased free calcium in endothelial cells under stimulation with adenine nucleotides. J Cell Physiol 1986;126:414–420.

    Article  CAS  PubMed  Google Scholar 

  67. Peach MH, Singer HA, Izzo NJ, Loeb AL. Role of calcium in endothelium-dependent relaxation of arterial smooth muscle. Am J Cardiol 1987;59:35A–43A.

    Article  CAS  PubMed  Google Scholar 

  68. Knowles RG, Palacios M, Palmer RMJ, Moncada S. Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase. Proc Natl Acad Sci USA 1989;86:5159–5162.

    Article  CAS  PubMed  Google Scholar 

  69. Cannell MB, Sage SO. Bradykinin-evoked changes in cytosolic calcium and membrane currents in cultured bovine pulmonary artery endothelial cells. J Physiol Lond 1989;419:555–568.

    CAS  PubMed  Google Scholar 

  70. Colden-Stanfield M, Schilling WP, Ritchie AK, Eskin SG, Navarro LT, Kunze DL. Bradykinininduced increases in cytosolic calcium and ionic currents in cultured aortic bovine endothelial cells. Circ Res 1987;61:632–640.

    Article  CAS  PubMed  Google Scholar 

  71. Luckhoff A, Zeh R, Busse R. Desensitization of the bradykinin-induced rise in intracellular free calcium in cultured endothelial cells. Pflugers Archiv Eur J Physiol 1988;412:654–658.

    Article  CAS  Google Scholar 

  72. Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca’ indicators with greatly improved fluorescence properties. J Biol Chem 1985;260:3440–3450.

    CAS  PubMed  Google Scholar 

  73. Song J, Davis MJ. Chloride and cation currents activated by bradykinin in coronary venular endothelial cells. Am J Physiol 1994;267:H2508–H2515.

    CAS  PubMed  Google Scholar 

  74. Dolor RJ, Hurwitz LM, Mirza Z, Strauss HC, Whorton AR. Regulation of extracellular calcium entry in endothelial cells: role of the intracellular calcium pool. Am J Physiol 1992;262:C 171-C 181.

    CAS  Google Scholar 

  75. Morgan-Boyd R, Stewart JM, Vavrek RJ, Hassid A. Effects of bradykinin and angiotensin II on intracellular Ca“ dynamics in endothelial cells. Am J Physiol 1987;253:C588–0598.

    CAS  PubMed  Google Scholar 

  76. Schilling WP. Effect of membrane potential on cytosolic calcium of bovine aortic endothelial cells. Am J Physiol 1989;257:H778–H784.

    CAS  PubMed  Google Scholar 

  77. Luckhoff A, Clapham DE. Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Ca“-permeable channel. Nature Lond 1992;355:356–358.

    Article  CAS  PubMed  Google Scholar 

  78. Merrit JE, Rink TJ. The effects of substance P and carbachol on inositol tris-and tetrakisphosphate formation and cytosolic free Caz+ in rat parotid acinar cells. J Biol Chem 1987;262:912–916.

    Google Scholar 

  79. Bossu JL, Elhamdani A, Feltz A, Tanzi F, Aunis D, Thierse D. Voltage-gated Ca entry in isolated bovine capillary endothelial cells: instance of a new type of BAY K 8644-sensitive channel. Pflugers Archiv. Eur J Physiol 1992;420:200–207.

    Article  CAS  Google Scholar 

  80. Mendelowitz D, Bacal K, Kunze D. Bradykinin-activated calcium influx pathway in bovine aortic endothelial cells. Am J Physiol 1992;262:H942 H948.

    PubMed  Google Scholar 

  81. Himmel HM, Strauss HC. Agonist-induced changes in Caz+and membrane currents in bovine aortic endothelial cells (BAEC). Biophys J 1993;64:A391 (abstract).

    Google Scholar 

  82. Sharma NR, Davis MJ. Substance P-induced calcium entry in endothelial cells is secondary to depletion of intracellular stores. Am J Physiol 1995;268:H962–H973.

    CAS  PubMed  Google Scholar 

  83. Song J, Zawieja DC, Granger HJ, Goodman A, Davis MJ. Multiple ionic mechanisms activated by bradykinin in coronary venular endothelial cells Endothelium 1996;4:29–40.

    Article  CAS  Google Scholar 

  84. Mehrke G, Daut J. The electrical response of cultured guinea-pig coronary endothelial cells to endothelium-dependent vasodilators. J Physiol Lond 1990;430:251–272.

    CAS  PubMed  Google Scholar 

  85. Mehrke G, Pohl U, Daut J. Effects of vasoactive agonists on the membrane potential of cultured bovine aortic and guinea-pig coronary endothelium. J Physiol Lond 1991;439:277–299.

    CAS  PubMed  Google Scholar 

  86. Bény JL. Effect of Substance P on the membrane potential of coronary arterial endothelial cells in situ. Agents Actions 1990;31:317–320.

    Article  PubMed  Google Scholar 

  87. Brunet PC, Bény JL. Substance P and bradykinin hyperpolarize pig coronary artery endothelial cells in primary culture. Blood Vessels 1989;26:228–234.

    CAS  PubMed  Google Scholar 

  88. Sharma NR, Davis MJ. Mechanism of substance P-induced hyperpolarization of porcine coronary artery endothelial cells. Am J Physiol 1994;266:H156–H164.

    CAS  PubMed  Google Scholar 

  89. Takeda K, Schini V, Stoeckel H. Voltage-activated potassium, but not calcium currents in cultured bovine aortic endothelial cells. Pflugers Arch 1987;410:385–393.

    Article  CAS  PubMed  Google Scholar 

  90. Olesen SP, Davies PF, Clapham DE. Muscarinic-activated K current in bovine aortic endothelial cells. Circ Res 1988;62:1059–1064.

    Article  CAS  PubMed  Google Scholar 

  91. Himmel HM, Whorton AR, Strauss HC. Intracellular calcium, currents, and stimulus-response coupling in endothelial cells. Hypertension 1993;21:112–127.

    Article  CAS  PubMed  Google Scholar 

  92. Lansman JB, Hallam TJ, Rink TJ. Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers. Nature 1987;325:811–813.

    Article  CAS  PubMed  Google Scholar 

  93. Johns A, Lategan TW, Lodge NJ, Ryan US, van Breemen C, Adams DJ. Calcium entry through receptor-operated channels in bovine pulmonary artery endothelial cells. Tissue Cell 1987;19:733–745.

    Article  CAS  PubMed  Google Scholar 

  94. Bregestovski PD, Ryan US. Voltage-gated and receptor-mediated ionic currents in the membrane of endothelial cells. J Mol Cell Cardiol 1989;21(Suppl. 1):103–108.

    Article  PubMed  Google Scholar 

  95. Hoyer J, Popp R, Meyer J, Galla HJ, Gogelein H. Angiotensin II, vasopressin and GTP[gamma-S] inhibit inward-rectifying K+ channels in porcine cerebral capillary endothelial cells. J Membr Biol 1991;123:55–62.

    Article  CAS  PubMed  Google Scholar 

  96. Adams DJ, Barakeh J, Laskey R, van Breemen C. Ion channels and regulation of intracellular calcium in vascular endothelial cells. FASEB J 1989;3:2389–2400.

    CAS  PubMed  Google Scholar 

  97. Colden-Stanfield M, Schilling WP, Possani LD, Kunze DL. Bradykinin-induced potassium current in cultured bovine aortic endothelial cells. J Membr Biol 1990;116:227–238.

    Article  CAS  PubMed  Google Scholar 

  98. Himmel HM, Rasmusson RL, Strauss HC. Agonist-induced changes of and membrane currents in single bovine aortic endothelial cells. Am J Physiol 1994;267:C1338–C1350.

    CAS  PubMed  Google Scholar 

  99. Sauve R, Chahine M, Tremblay J, Hamet P. Single-channel analysis of the electrical response of bovine aortic endothelial cells to bradykinin stimulation: contribution of a Ca’-dependent K+ channel. J Hypertens 1990;8: suppl. 7, S193–S201.

    CAS  Google Scholar 

  100. Vaca L, Schilling WP, Kunze DL. G-protein mediated regulation of a Caz+-dependent K+ channel in cultured vascular endothelial cells. Pflugers Archiv 1992;422:66–74.

    Article  CAS  PubMed  Google Scholar 

  101. Fichtner H, Frobe U, Busse R, Kohlhardt M. Single nonselective cation channels and Ca2tactivated K+channels in aortic endothelial cells. J Membr Biol 1987;98:125–133.

    Article  CAS  PubMed  Google Scholar 

  102. Bregestovski P, Bakhramov A, Danilov S, Moldobaeva A, Takeda K. Histamine-induced inward currents in cultured endothelial cells from human umbilical vein. Br J Pharmacol 1988;95:429–436.

    Article  CAS  PubMed  Google Scholar 

  103. Takeda K, Klepper M. Voltage-dependent and agonist-activated ionic currents in vascular endothelial cells: a review. Blood Vessels 1990;27:169–183.

    CAS  PubMed  Google Scholar 

  104. Groschner K, Kukovetz WR. Voltage-sensitive chloride channels of large conductance in the membrane of pig aortic endothelial cells. Pflugers Arch 1992;421:209–217.

    Article  CAS  PubMed  Google Scholar 

  105. Olesen SP, Bundgaard M. Chloride-selective channels of large conductance in bovine aortic endothelial cells. Acta Physiol Scand 1992;144:191–198.

    Article  CAS  PubMed  Google Scholar 

  106. Vaca L, Kunze DL. cAMP-dependent phosphorylation modulates voltage gating in an endothelial Cl-channel. Am J Physiol 1993;264:C370–C375.

    CAS  PubMed  Google Scholar 

  107. Klockner U. Intracellular calcium ions activate a low-conductance chloride channel in smooth-muscle cells isolated from human mesenteric artery. Pflugers Archiv Eur J Physiol 1993;424:231–237.

    Article  CAS  Google Scholar 

  108. White CR, Brock TA. Calcium-mobilizing agonists stimulate anion fluxes in cultured endothelial cells from human umbilical vein. J Membr Biol 1994;142:171–179.

    CAS  PubMed  Google Scholar 

  109. Mason MJ, Garcia-Rodriquez C, Grinstein S. Coupling between intracellular CaZ+ stores and the Ca“ permeability of the plasma membrane. J Biol Chem 1991;266:856–862.

    Google Scholar 

  110. Hoth M, Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature Lond 1992;355:353–356.

    Article  CAS  PubMed  Google Scholar 

  111. Schilling WP, Cabello OA, Rajan L. Depletion of the inositol 1,4,5-trisphosphate-sensitive intracellular Caz+store in vascular endothelial cells activates the agonist-sensitive Cat+-influx pathway. Biochem J 1992;284:521–530.

    CAS  PubMed  Google Scholar 

  112. Gericke M, Droogmans G, Nilius B. Thapsigargin discharges intracellular calcium stores and induces transmembrane currents in human endothelial cells. Pflugers Archiv 1993;422:552–557.

    Article  CAS  PubMed  Google Scholar 

  113. Vaca L, Kunze DL. Depletion and refilling of intracellular Ca“ stores induce oscillations of Ca” current. Am J Physiol 1993;264:H1319–H1322.

    CAS  PubMed  Google Scholar 

  114. Vaca L, Kunze DL. Depletion of intracellular Ca“ stores activates a CaZ+-selective channel in vascular endothelium. Am J Physiol 1994;267:C920–0925.

    CAS  PubMed  Google Scholar 

  115. Adams DJ, Lategan TW, Lodge NJ, van Breemen C. Inward rectifying K+channels and thrombin-activated cation channels in cultured endothelial cells from bovine pulmonary artery. J Physiol Lond 1987;394:45P (abstract).

    Google Scholar 

  116. Parekh AB, Terlau H, Stuhmer W. Depletion of InsP3stores activates a Ca“ and K+current by means of a phosphatase and a diffusible messenger. Nature Lond 1993;364:814–818.

    Article  CAS  PubMed  Google Scholar 

  117. Randriamampita C, Tsien RY. Emptying of intracellular Ca“ stores releases a novel small messenger that stimulates Ca” influx. Nature Lond 1993;364:809–814.

    Article  CAS  PubMed  Google Scholar 

  118. Lepple-Wienhues A, Cahalan MD. Two different calcium-influx pathways in melanoma cells are cell cycle-dependent. Biophys J 1995;68:Al22 (abstract).

    Google Scholar 

  119. Blennerhassett MG, Kannan MS, Garfield RE. Density-dependent hyperpolarization in cultured aortic smooth muscle cells. Am J Physiol 1989;256:(Heart and Circulatory Physiology 25) C644–0651.

    CAS  PubMed  Google Scholar 

  120. Falcone JC, Kuo L, Meininger GA. Endothelial cell calcium increases during flow-induced dilation in isolated arterioles. Am J Physiol 1993;264:H653–H659.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Song, J., Ram, J.L. (1996). Ionic Mechanisms of Peptide-Induced Responses in Vascular Endothelial Cells. In: Sowers, J.R. (eds) Endocrinology of the Vasculature. Contemporary Endocrinology, vol 1. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0231-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0231-8_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6672-3

  • Online ISBN: 978-1-4612-0231-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics