Designing Time-of-Flight Mass Spectrometers for the Future: Multichannel Recording of Peptide Amino Acid Sequences

  • Robert J. Cotter
  • Timothy J. Cornish
  • Marcela Cordero


Mass spectrometry has played an important role in research in the health and life sciences for many years. Identification and quantitation of the metabolites of new drugs, for example, has generally involved the use of combined gas chromatography/mass spectrometry (GCMS). However, in recent years, the introduction of new ionization techniques such as plasma desorption mass spectrometry (PDMS), fast atom bombardment (FAB), electrospray ionization (ESI) and matrix-assisted laser desorption / ionization (MALDI) has extended the analytical capabilities of mass spectrometers. The samples now amenable to these new techniques include peptides and proteins, carbohydrates and glycopeptides, and oligonucleotides. Double-focusing sector instruments and quadrupole mass filters continue to be the most commonly used mass analyzers. Because they record mass spectra by scanning the mass range, they are most appropriately used for methods (such as FAB and ESI) which produce ions continuously. In addition, sector and quadrupole analyzers are easily combined to form tandem (or hybrid) configurations that can provide detailed structural analysis from samples that may include a mixture of analytes. Thus, combinations of FAB with a four-sector mass analyzer or ESI with a triple quadrupole analyzer have become the major high performance instruments for the amino acid sequence analysis of peptides and proteins.


Flight Time Amino Acid Sequence Analysis Drift Region Metastable Fragmentation Kinetic Energy Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Karas and F. Hillenkamp, Anal Chem. 1988, 60, 2299.CrossRefGoogle Scholar
  2. 2.
    R. J. Cotter, Anal Chem. 1992, 64, 1027A–1039A.Google Scholar
  3. 3.
    B. T. Chait, B. F. Gisin and F. H. Field, J. Am. Chem. Soc. 1982, 104, 5157–5162.CrossRefGoogle Scholar
  4. 4.
    D. M. Bunk and R. D. Macfarlane, Int. J. Mass Spectrom. Ion Proc. 1991, 111, 55–75.CrossRefGoogle Scholar
  5. 5.
    L. J. Keefe, E. E. Lattman, C. Wolkow, A. Woods, M. Chevrier and R. J. Cotter, J. Appl. Crystallogr. 1992,25, 205–210.CrossRefGoogle Scholar
  6. 6.
    A. S. Woods, R. J. Cotter, M. Yoshioka, E. Bullesbach and C. Schwabe, Int. J. Mass Spectrom. Ion Proc. 1991, 111, 77–88.CrossRefGoogle Scholar
  7. 7.
    A. S. Woods, W. Gibson and R. J. Cotter, in Time-of-Flight Mass Spectrometry, R. J. Cotter, Ed.; American Chemical Society: Washington, DC, 1994; pp 194–210.Google Scholar
  8. 8.
    J. Meschia, S. S. Sisodia, R. Wang and R. J. Cotter, J. Biol. Chem. 1991, 25, 16960–16964.Google Scholar
  9. 9.
    B. T. Chait, T. Chaudhary and F. H. Field, in Methods in Protein Sequence Analysis, K. A. Walsh, Ed.; Humana Press: Clifton, N.J., 1987; pp 483–492.Google Scholar
  10. 10.
    C. J. Aldrich, A. DeCloux, A. S. Woods, R. J. Cotter, M. J. Soloski and J. Forman, Cell 1995, 79, 649–658.CrossRefGoogle Scholar
  11. 11.
    B. T. Chait, R. Wang, R. C. Beavis and S. B. H. Kent, Science 1993,262, 89–92.CrossRefGoogle Scholar
  12. 12.
    J. K. Olthoff, I. Lys and R. J. Cotter, Rapid Commun. Mass Spectrom. 1988,2, 171–175.CrossRefGoogle Scholar
  13. 13.
    R. Grix, R. Kutscher, G. Li, U. Gruner and H. Wollnik, Rapid Commun. Mass Spectrom. 1988,2, 83–85.CrossRefGoogle Scholar
  14. 14.
    B. M. Chien, S. M. Michael and D. M. Lubman, Rapid Commun. Mass Spectrom. 1993, 7, 837–843.CrossRefGoogle Scholar
  15. 15.
    B. A. Mamyrin, V. J. Karatajev, D. V. Shmikk and V. A. Zagulin, Sou. Phys. JETP 1973, 37, 45–48.Google Scholar
  16. 16.
    T. J. Cornish and R. J. Cotter, Rapid Commun. Mass Spectrom., in press.Google Scholar
  17. 17.
    T. J. Cornish and R. J. Cotter, Org. Mass Spectrom. 1993,28,1129–1134.CrossRefGoogle Scholar
  18. 18.
    B. Spengler, D. Kirsch, R. Kaufmann and E. Jaeger, Rapid Commun. Mass Spectrom. 1992, 6, 105–108.Google Scholar
  19. 19.
    X. Tang, R. Beavis, W. Ens, F. Lafortune, B. Schueler and K. G. Standing, Int. J. Mass Spectrom. Ion Proc. 1988, 85, 43–67.Google Scholar
  20. 20.
    T. J. Cornish and R.J. Cotter, Rapid Commun. Mass Spectrom. 1993, 7, 1037–1040.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Robert J. Cotter
    • 1
  • Timothy J. Cornish
    • 1
  • Marcela Cordero
    • 1
  1. 1.Middle Atlantic Mass Spectrometry Laboratory, Department of Pharmacology and Molecular SciencesThe Johns Hopkins University School of MedicineBaltimore

Personalised recommendations