Advertisement

Enhancement of Fe(III), Co(III), and Cr(VI) Reduction at Elevated Temperatures and by a Thermophilic Bacteriumt

  • Chuanlun Zhang
  • Shi Liu
  • John Logan
  • Raja Mazumder
  • Tommy J. Phelps
Part of the ABAB Symposium book series (ABAB, volume 57/58)

Abstract

An unusual thermophilic bacterium has been isolated from deep subsurface sediments and tested for its ability to enhance Fe(III), Co(III), and Cr(VI) reduction. Without the bacterium, abiotic metal reduction was insignificant at temperatures below 45°C, but became a major process at 75°C. Addition of the bacterium enhanced the reduction of these metals up to fourfold, probably by nonspecific mechanisms. This study demonstrates abiotic and biotic metal reduction under organic-rich thermic conditions, and suggests that thermally and/or biologically enhanced metal reduction may provide an alternative for remediating metal contamination.

Index Entries

Thermophilic bacterium metal reduction ferric citrate Co(III)EDTA chromate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lovley, D. R. (1987) Geomicrobiol. J. 5, 375–399.CrossRefGoogle Scholar
  2. 2.
    Lovley, D. R. (1991) Microbiol. Rev. 55, 259–287.Google Scholar
  3. 3.
    Lovley, D. R. (1993) Annu. Rev. Microbiol. 47, 263–290.CrossRefGoogle Scholar
  4. 4.
    Nealson, K. H. and Saffarini, D. (1994) Annu. Rev. Microbiol. 48, 311–343.CrossRefGoogle Scholar
  5. 5.
    Lovley, D. R. and Phillips, E. J. P. (1988) Appl. Environ. Microbiol. 54, 1472–1480.Google Scholar
  6. 6.
    Myers, C. R. and Nealson, K. H. (1988) Science 240, 1319–1321.CrossRefGoogle Scholar
  7. 7.
    Machel, H. G. and Burton, E. A. (1991) Geophys. 56, 598–605.CrossRefGoogle Scholar
  8. 8.
    Lovley, D. R. (1990) Iron Biominerals, Frankel, R. B. and Blakemore, R. P., eds., Plenum, New York, pp. 151–166.Google Scholar
  9. 9.
    Boone, D. R., Liu, Y., Zhao, Z., Balkwill, D. L., Drake, G. R., Stevens, T. O., and Aldrich, H. C. (1995) Intl. J. Syst. Bacteriol. 45, 441–448.CrossRefGoogle Scholar
  10. 10.
    Balkwill, D. L., Boone, D. R., Colwell, F. S., Griffin, T., Kieft, T. L., Lehman, et al. (1994) EOS 75, 385, 395–396.Google Scholar
  11. 11.
    Phelps, T. J., Raione, E. G., White, D. C., and Fliermans, C. B. (1989) Geomicrobiol. J. 7, 79–91.CrossRefGoogle Scholar
  12. 12.
    Stookey, L. L. (1970) Anal. Chem. 42, 779–781.CrossRefGoogle Scholar
  13. 13.
    Urone, P. F. (1955) Anal. Chem. 27, 1354–1355.CrossRefGoogle Scholar
  14. 14.
    Lovley, D. R. and Phillips, E. J. P. (1994) Appl. Environ. Microbiol. 60, 726–728.Google Scholar
  15. 15.
    Levenspiel, O. (1972) Chemical Reaction Engineering, Wiley, New York.Google Scholar
  16. 16.
    Lovley, D. R., Phillips, E. J. P., and Lonergan, D. J. (1991) Environ. Sci. Technol. 25, 1062–1067.CrossRefGoogle Scholar
  17. 17.
    Kostka, J. E. and Nealson, K. H. (1995) Environ. Sci. Technol. 29, 2535–2540.CrossRefGoogle Scholar
  18. 18.
    Arnold, R. G., Dichristina, T. J., and Hoffmann, M. R. (1986) Appl. Environ. Microbiol. 52, 281–289.Google Scholar
  19. 19.
    Jones, J. G., Gardener, S., and Simon, B. M. (1983) J. Gen. Microbiol. 129, 131–139.Google Scholar
  20. 20.
    Elovitz, M. S. and Fish, W. (1994) Environ. Sci. Technol. 28, 2161–2169.CrossRefGoogle Scholar
  21. 21.
    Palmer, C. D. and Wittbrodt, P. R. (1991) Environ. Health Perspect. 92, 25–40.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Chuanlun Zhang
    • 1
  • Shi Liu
    • 1
  • John Logan
    • 1
  • Raja Mazumder
    • 1
  • Tommy J. Phelps
    • 1
  1. 1.Environmental Sciences DivisionOak Ridge National LaboratoryUSA

Personalised recommendations