Skip to main content

Effect of Culture Conditions on Xylitol Production by Candida guilliermondii FTI 20037

  • Chapter
  • 463 Accesses

Part of the book series: ABAB Symposium ((ABAB,volume 57/58))

Abstract

Lignocellulosic materials like sugar cane bagasse include about 35% of hemicellulose (1,2). Hemicelluloses consist of polymeric substances, such as xylans and glucomannans, which differ from cellulose in having shorter molecular chains, a homo-or heteropolymeric backbone structure, and branch molecules, like acetic acid and a variety of pentoses and hexoses (3). The use of D-xylose, the main component of xylan, to obtain chemical products has been a challenge in wood chemistry for the last 10 years.

Author to whom all correspondence and reprint requests should be addressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dekker, R. F. H. (1982) 12th Int. Union of Biochem. Con., Perth, 15–21 August pp. 1–4.

    Google Scholar 

  2. Tsao, G. T., Ladisch, M. R., Voloch, M., and Bienkowski, P. (1982), Process Biochem. 17(5), 34–38.

    CAS  Google Scholar 

  3. Fengel, D. and Wegener, G., eds. (1989), Wood—Chemistry, Ultrastructure, Reactions. De Gruyter, Berlin-New York, pp. 106–107.

    Google Scholar 

  4. Jeffries, T. W. (1981), Biotechnol. Letts. 3, 213–218.

    Article  CAS  Google Scholar 

  5. Du Preez, J. C. (1983), Biotechnol. Letts. 5(5), 357–362.

    Article  Google Scholar 

  6. Mäkinen, K. K. and Isokangas, P. (1988), Prog. in Food and Nutr. Sci. 12, 73–109.

    Google Scholar 

  7. Lang, K. (1971), Klin. Wochenschr. 49, 233–245.

    Article  CAS  Google Scholar 

  8. Manz, U., Vanninen, E., and Voirol, F. (1973), Food R. A. Symp. Sugar and Sugar Replacem., London Oct.3;10, 1973.

    Google Scholar 

  9. Wisniak, J., Hershkowitz, M., and Stein, S. (1974), Ind. Eng. Chem. Prod. Res. Dev. 3(4), 232–236.

    Article  Google Scholar 

  10. Barnett, J. A. (1976), Adv. Carbohydr. Chem. Biochem. 32, 125–234.

    Article  CAS  Google Scholar 

  11. Schneider, H., Wang, P. Y., Chan, V. K., and Maleszka, R., (1981), Biotechnol. Letts. 3(2), 89–92.

    Article  CAS  Google Scholar 

  12. Toivola, A., Yarrow, D., Van den Bosch, E., Van Dijken, J. P. and Scheffers, W. A. (1984), Appl. and Environ. Microbiol. 47, 1221–1223.

    CAS  Google Scholar 

  13. Barbosa, M. F. S., Medeiros, M. B., Mancilha, I. M., Schneider, H., and Lee, H. (1988), J. Ind. Microbiol. 3, 241–251.

    Article  CAS  Google Scholar 

  14. Felipe, M. G. A., Mancilha, I. M., Vitolo, M., Roberto, I. C., Silva, S. S., and Rosa, S. A. M. (1988), Arquivos de Biol. e Tecnol. 36(1), 103–114.

    Google Scholar 

  15. Sreenath, H. K., Chapman, T. W., and Jeffries, T. W. (1986), Appl. Microbial Biotechnol. 24, 294–299.

    Article  CAS  Google Scholar 

  16. Hsiao, H-Y., Chiang, L. C., Ueng, P. P., and Tsao, G. T. (1982), Appl. Environ. Microbiol. 43, 840–845.

    CAS  Google Scholar 

  17. Magasanik, B. (1961), Cold Spring Harbour Symp. Quant. Biol. 26, 244–256.

    Article  Google Scholar 

  18. Holzer, H. (1976), Trends in Biochem. Sci. 1, 178–181.

    CAS  Google Scholar 

  19. Webb, S. R. and Lee, H. (1990), Biotech. Adv. 8, 685–697.

    Article  CAS  Google Scholar 

  20. Lee, H. (1992), Microbiol. Letts. 92, 1–4.

    CAS  Google Scholar 

  21. Jeffries, T. W. (1985), Biotechnol. and Bioeng. Symp. 15, 149–166.

    Google Scholar 

  22. Van Zyl, C., Prior, B. A., and Preez du, J. C. (1988), Enzyme and Microb. Technol. 13, 82–86.

    Google Scholar 

  23. Ferrari, M. D., Neirotti, E., Albornoz, C., and Saucedo, E. (1992), Biotechnol. Bioeng. 40, 753–759.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pfeifer, M.J., Silva, S.S., Felipe, M.G.A., Roberto, I.C., Mancilha, I.M. (1996). Effect of Culture Conditions on Xylitol Production by Candida guilliermondii FTI 20037. In: Wyman, C.E., Davison, B.H. (eds) Seventeenth Symposium on Biotechnology for Fuels and Chemicals. ABAB Symposium, vol 57/58. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0223-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0223-3_39

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6669-3

  • Online ISBN: 978-1-4612-0223-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics