Bioconversion of Rice Straw Hemicellulose Hydrolysate for the Production of Xylitol

Effect of pH and Nitrogen Source
  • Inés C. C. Roberto
  • Silvio S. Silva
  • Maria G. A. Felipe
  • Ismael M. De Mancilha
  • Sunao Sato
Part of the ABAB Symposium book series (ABAB, volume 57/58)


Xylitol production by the yeast Candida guilliermondii was evaluated in a rice straw hemicellulose hydrolysate under different conditions of initial pH and nitrogen source. Xylitol production was significantly affected (p < 0.05) by the nitrogen source, pH, and the interaction between these factors. The best yield and productivity were observed at initial pH of 5.3 in medium containing ammonium sulfate as nitrogen source. Under these conditions, the xylitol yield factor (Yp/s) was 0.68 g/g and volumetric productivity (Qp) was 0.51 g/L.h.

Index Entries

Rice straw hemicellulose hydrolysate xylitol xylose Candida guilliermondii 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Srnivasan, M. C., Ramarao, R., Deshmukh, S. S., and Sahasrabudhe, N. A. (1983), Enzyme Microb. Technol. 5(4), 269–272.CrossRefGoogle Scholar
  2. 2.
    Roberto, I. C., Lacis, L., Barbosa, M. F. S., and Mancilha, I. M. (1991), Process Biochem. 26, 15–21.CrossRefGoogle Scholar
  3. 3.
    Lawford, H. G. and Rousseau, J. D. (1993), Biotechnol. Lett. 15(5), 505–510.CrossRefGoogle Scholar
  4. 4.
    Meyer, P. S., du Preez, J. C., and Kilian, S. G. (1992), Syst. Appl. Microbiol. 15(1), 161–165.CrossRefGoogle Scholar
  5. 5.
    Brownell, J. E. and Nakas, J. P. (1991), J. Ind. Microbiol. 7, 1–6.CrossRefGoogle Scholar
  6. 6.
    Strehaino, P. and Dupuy, M. L. (1990), French Patent 2,641,545.Google Scholar
  7. 7.
    Roberto, I. C., Felipe, M. G. A., Lacis, L., Silva, S. S., and Mancilha, I. M. (1991), Bioresource Technol. 36(3), 271–275.CrossRefGoogle Scholar
  8. 8.
    Felipe, M. G. A., Mancilha, I. M., Vitolo, M., Roberto, I. C., and Silva, S. S. (1993), Arquivos de Biologia e Tecnologia 36(1), 103–114.Google Scholar
  9. 9.
    Bar, A. (1986), in Alternative Sweeteners, O’Brien-Nabors, L. and Gelardi, R., eds., Marcel Dekker, New York, pp. 185–216.Google Scholar
  10. 10.
    Pepper, T. and Olinger, P. M. (1988), Food Technol. 42(10), 98–106.Google Scholar
  11. 11.
    Melaja, J. and Hämäläinen, L. (1977),US Patent 4,008,285.Google Scholar
  12. 12.
    Heikkilä, H., Nurmi, J., Rahkila, L., and Töyrylä, M. (1992), US Patent 5,081,026.Google Scholar
  13. 13.
    Nolleau, V., Preziosi-Belloy, L., Delgenes, J. P., and Navarro, J. M. (1993), Curr. Microbiol. 27, 191–197.CrossRefGoogle Scholar
  14. 14.
    Meyrial, V., Delgenes, J. P., Moletta, R., and Navarro, J. M. (1991), Biotechnol. Lett. 13(4), 281–286.CrossRefGoogle Scholar
  15. 15.
    Barbosa, M. F. S., Medeiros, M. B., Mancilha, I. M., Schneider, H., and Lee, H. (1988), J. Ind. Microbiol. 3, 241–251.CrossRefGoogle Scholar
  16. 16.
    Silva, S. S., Mancilha, I. M., Queiroz, M. A., Felipe, M. G. A., Roberto, I. C., and Vitolo, M. (1994), J. Basic Microbiol. 34(3), 205–208.CrossRefGoogle Scholar
  17. 17.
    van Zyl, C., Prior, B. A., and du Preez, J. C. (1991), Enzyme Microb. Technol. 13, 82–86.CrossRefGoogle Scholar
  18. 18.
    Chung, I. S. and Lee, Y. Y. (1985), Biotechnol. Bioeng. 27, 308–315.CrossRefGoogle Scholar
  19. 19.
    Roberto, I. C., Mancilha, I. M., Souza, C. A., Felipe, M. G. A., Sato, S., and Castro, H. F. (1994), Biotechnol. Lett. 16(11), 1211–1216.CrossRefGoogle Scholar
  20. 20.
    Box, G. E. P., Hunter W. G., and Hunter, J. S. (1978), in Statistics for Experimenters, Wiley, New York, pp. 228–244.Google Scholar
  21. 21.
    Tran, A. V. and Chambers, R. P. (1985), Biotechnol. Lett. 7(11), 841–846.CrossRefGoogle Scholar
  22. 22.
    Weigert, B., Klein, C., Rizzi, M., Lauterbach, C., and Deliweg, H. (1988), Biotechnol. Lett. 10(12), 895–900.Google Scholar
  23. 23.
    Ferrari, M. D., Neirotti, E., Albornoz, C., and Saucedo, E. (1992), Biotechnol. Bioeng. 40, 753–759.CrossRefGoogle Scholar
  24. 24.
    Bjorling, T. and Lindman, B. (1989), Enzyme Microb. Technol. 11(4), 240–246.CrossRefGoogle Scholar
  25. 25.
    Meyer, P. S., du Preez, J. C., and Kilian, S. G. (1992), J. Ind. Microbiol. 9, 109–113.CrossRefGoogle Scholar
  26. 26.
    Felipe, M. G. A., Vieira, D. C., Vitolo, M., Silva, S. S., Roberto, I. C., and Mancilha, I. M. (1995), J. Basic Microbiol. 35, 171–177.CrossRefGoogle Scholar
  27. 27.
    Perego, P., Converti, A., Palazzi, E., Del Borghi, M. D., and Ferraiolo, G. (1990), J. Ind. Microbiol. 6, 157–164.CrossRefGoogle Scholar
  28. 28.
    van Zyl, C., Prior, B. A., and du Preez, J. C. (1988), Appl. Biochem. Biotechnol. 17, 357–369.CrossRefGoogle Scholar
  29. 29.
    Lawford, H. G. and Rousseau, J. D. (1993), Appl. Biochem. Biotechnol. 39/40, 301–322.CrossRefGoogle Scholar
  30. 30.
    Phaff, H. J., Miller, M. W., and Mark, E. W. (1978), in The Life of Yeasts, 2nd ed., Harvard University Press, Cambridge, MA, pp. 168–169.Google Scholar
  31. 31.
    Jeffries, T. W. (1985), Biotechnol. Bioeng. Symp. 15, 149–166.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Inés C. C. Roberto
    • 1
  • Silvio S. Silva
    • 1
  • Maria G. A. Felipe
    • 1
  • Ismael M. De Mancilha
    • 1
  • Sunao Sato
    • 2
  1. 1.Faculty of Chemical Engineering of LorenaCenter for BiotechnologyLorenaBrazil
  2. 2.Faculty of Pharmaceutical SciencesUniversity of Sao PauloBrazil

Personalised recommendations